foundry_cheatcodes/
inspector.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
//! Cheatcode EVM inspector.

use crate::{
    evm::{
        mapping::{self, MappingSlots},
        mock::{MockCallDataContext, MockCallReturnData},
        prank::Prank,
        DealRecord, GasRecord, RecordAccess,
    },
    inspector::utils::CommonCreateInput,
    script::{Broadcast, Wallets},
    test::{
        assume::AssumeNoRevert,
        expect::{
            self, ExpectedCallData, ExpectedCallTracker, ExpectedCallType, ExpectedEmit,
            ExpectedRevert, ExpectedRevertKind,
        },
    },
    utils::IgnoredTraces,
    CheatsConfig, CheatsCtxt, DynCheatcode, Error, Result,
    Vm::{self, AccountAccess},
};
use alloy_primitives::{
    hex,
    map::{AddressHashMap, HashMap},
    Address, Bytes, Log, TxKind, B256, U256,
};
use alloy_rpc_types::request::{TransactionInput, TransactionRequest};
use alloy_sol_types::{SolCall, SolInterface, SolValue};
use foundry_common::{evm::Breakpoints, TransactionMaybeSigned, SELECTOR_LEN};
use foundry_evm_core::{
    abi::Vm::stopExpectSafeMemoryCall,
    backend::{DatabaseError, DatabaseExt, RevertDiagnostic},
    constants::{CHEATCODE_ADDRESS, HARDHAT_CONSOLE_ADDRESS, MAGIC_ASSUME},
    utils::new_evm_with_existing_context,
    InspectorExt,
};
use foundry_evm_traces::{TracingInspector, TracingInspectorConfig};
use foundry_wallets::multi_wallet::MultiWallet;
use itertools::Itertools;
use proptest::test_runner::{RngAlgorithm, TestRng, TestRunner};
use rand::Rng;
use revm::{
    interpreter::{
        opcode as op, CallInputs, CallOutcome, CallScheme, CreateInputs, CreateOutcome,
        EOFCreateInputs, EOFCreateKind, Gas, InstructionResult, Interpreter, InterpreterAction,
        InterpreterResult,
    },
    primitives::{BlockEnv, CreateScheme, EVMError, EvmStorageSlot, SpecId, EOF_MAGIC_BYTES},
    EvmContext, InnerEvmContext, Inspector,
};
use serde_json::Value;
use std::{
    collections::{BTreeMap, VecDeque},
    fs::File,
    io::BufReader,
    ops::Range,
    path::PathBuf,
    sync::Arc,
};

mod utils;

pub type Ecx<'a, 'b, 'c> = &'a mut EvmContext<&'b mut (dyn DatabaseExt + 'c)>;
pub type InnerEcx<'a, 'b, 'c> = &'a mut InnerEvmContext<&'b mut (dyn DatabaseExt + 'c)>;

/// Helper trait for obtaining complete [revm::Inspector] instance from mutable reference to
/// [Cheatcodes].
///
/// This is needed for cases when inspector itself needs mutable access to [Cheatcodes] state and
/// allows us to correctly execute arbitrary EVM frames from inside cheatcode implementations.
pub trait CheatcodesExecutor {
    /// Core trait method accepting mutable reference to [Cheatcodes] and returning
    /// [revm::Inspector].
    fn get_inspector<'a>(&'a mut self, cheats: &'a mut Cheatcodes) -> Box<dyn InspectorExt + 'a>;

    /// Obtains [revm::Evm] instance and executes the given CREATE frame.
    fn exec_create(
        &mut self,
        inputs: CreateInputs,
        ccx: &mut CheatsCtxt,
    ) -> Result<CreateOutcome, EVMError<DatabaseError>> {
        with_evm(self, ccx, |evm| {
            evm.context.evm.inner.journaled_state.depth += 1;

            // Handle EOF bytecode
            let first_frame_or_result = if evm.handler.cfg.spec_id.is_enabled_in(SpecId::OSAKA) &&
                inputs.scheme == CreateScheme::Create &&
                inputs.init_code.starts_with(&EOF_MAGIC_BYTES)
            {
                evm.handler.execution().eofcreate(
                    &mut evm.context,
                    Box::new(EOFCreateInputs::new(
                        inputs.caller,
                        inputs.value,
                        inputs.gas_limit,
                        EOFCreateKind::Tx { initdata: inputs.init_code },
                    )),
                )?
            } else {
                evm.handler.execution().create(&mut evm.context, Box::new(inputs))?
            };

            let mut result = match first_frame_or_result {
                revm::FrameOrResult::Frame(first_frame) => evm.run_the_loop(first_frame)?,
                revm::FrameOrResult::Result(result) => result,
            };

            evm.handler.execution().last_frame_return(&mut evm.context, &mut result)?;

            let outcome = match result {
                revm::FrameResult::Call(_) => unreachable!(),
                revm::FrameResult::Create(create) | revm::FrameResult::EOFCreate(create) => create,
            };

            evm.context.evm.inner.journaled_state.depth -= 1;

            Ok(outcome)
        })
    }

    fn console_log(&mut self, ccx: &mut CheatsCtxt, message: String) {
        self.get_inspector(ccx.state).console_log(message);
    }

    /// Returns a mutable reference to the tracing inspector if it is available.
    fn tracing_inspector(&mut self) -> Option<&mut Option<TracingInspector>> {
        None
    }
}

/// Constructs [revm::Evm] and runs a given closure with it.
fn with_evm<E, F, O>(
    executor: &mut E,
    ccx: &mut CheatsCtxt,
    f: F,
) -> Result<O, EVMError<DatabaseError>>
where
    E: CheatcodesExecutor + ?Sized,
    F: for<'a, 'b> FnOnce(
        &mut revm::Evm<'_, &'b mut dyn InspectorExt, &'a mut dyn DatabaseExt>,
    ) -> Result<O, EVMError<DatabaseError>>,
{
    let mut inspector = executor.get_inspector(ccx.state);
    let error = std::mem::replace(&mut ccx.ecx.error, Ok(()));
    let l1_block_info = std::mem::take(&mut ccx.ecx.l1_block_info);

    let inner = revm::InnerEvmContext {
        env: ccx.ecx.env.clone(),
        journaled_state: std::mem::replace(
            &mut ccx.ecx.journaled_state,
            revm::JournaledState::new(Default::default(), Default::default()),
        ),
        db: &mut ccx.ecx.db as &mut dyn DatabaseExt,
        error,
        l1_block_info,
    };

    let mut evm = new_evm_with_existing_context(inner, &mut *inspector);

    let res = f(&mut evm)?;

    ccx.ecx.journaled_state = evm.context.evm.inner.journaled_state;
    ccx.ecx.env = evm.context.evm.inner.env;
    ccx.ecx.l1_block_info = evm.context.evm.inner.l1_block_info;
    ccx.ecx.error = evm.context.evm.inner.error;

    Ok(res)
}

/// Basic implementation of [CheatcodesExecutor] that simply returns the [Cheatcodes] instance as an
/// inspector.
#[derive(Debug, Default, Clone, Copy)]
struct TransparentCheatcodesExecutor;

impl CheatcodesExecutor for TransparentCheatcodesExecutor {
    fn get_inspector<'a>(&'a mut self, cheats: &'a mut Cheatcodes) -> Box<dyn InspectorExt + 'a> {
        Box::new(cheats)
    }
}

macro_rules! try_or_return {
    ($e:expr) => {
        match $e {
            Ok(v) => v,
            Err(_) => return,
        }
    };
}

/// Contains additional, test specific resources that should be kept for the duration of the test
#[derive(Debug, Default)]
pub struct Context {
    /// Buffered readers for files opened for reading (path => BufReader mapping)
    pub opened_read_files: HashMap<PathBuf, BufReader<File>>,
}

/// Every time we clone `Context`, we want it to be empty
impl Clone for Context {
    fn clone(&self) -> Self {
        Default::default()
    }
}

impl Context {
    /// Clears the context.
    #[inline]
    pub fn clear(&mut self) {
        self.opened_read_files.clear();
    }
}

/// Helps collecting transactions from different forks.
#[derive(Clone, Debug)]
pub struct BroadcastableTransaction {
    /// The optional RPC URL.
    pub rpc: Option<String>,
    /// The transaction to broadcast.
    pub transaction: TransactionMaybeSigned,
}

#[derive(Clone, Debug, Copy)]
pub struct RecordDebugStepInfo {
    /// The debug trace node index when the recording starts.
    pub start_node_idx: usize,
    /// The original tracer config when the recording starts.
    pub original_tracer_config: TracingInspectorConfig,
}

/// Holds gas metering state.
#[derive(Clone, Debug, Default)]
pub struct GasMetering {
    /// True if gas metering is paused.
    pub paused: bool,
    /// True if gas metering was resumed or reset during the test.
    /// Used to reconcile gas when frame ends (if spent less than refunded).
    pub touched: bool,
    /// True if gas metering should be reset to frame limit.
    pub reset: bool,
    /// Stores paused gas frames.
    pub paused_frames: Vec<Gas>,

    /// The group and name of the active snapshot.
    pub active_gas_snapshot: Option<(String, String)>,

    /// Cache of the amount of gas used in previous call.
    /// This is used by the `lastCallGas` cheatcode.
    pub last_call_gas: Option<crate::Vm::Gas>,

    /// True if gas recording is enabled.
    pub recording: bool,
    /// The gas used in the last frame.
    pub last_gas_used: u64,
    /// Gas records for the active snapshots.
    pub gas_records: Vec<GasRecord>,
}

impl GasMetering {
    /// Start the gas recording.
    pub fn start(&mut self) {
        self.recording = true;
    }

    /// Stop the gas recording.
    pub fn stop(&mut self) {
        self.recording = false;
    }

    /// Resume paused gas metering.
    pub fn resume(&mut self) {
        if self.paused {
            self.paused = false;
            self.touched = true;
        }
        self.paused_frames.clear();
    }

    /// Reset gas to limit.
    pub fn reset(&mut self) {
        self.paused = false;
        self.touched = true;
        self.reset = true;
        self.paused_frames.clear();
    }
}

/// Holds data about arbitrary storage.
#[derive(Clone, Debug, Default)]
pub struct ArbitraryStorage {
    /// Mapping of arbitrary storage addresses to generated values (slot, arbitrary value).
    /// (SLOADs return random value if storage slot wasn't accessed).
    /// Changed values are recorded and used to copy storage to different addresses.
    pub values: HashMap<Address, HashMap<U256, U256>>,
    /// Mapping of address with storage copied to arbitrary storage address source.
    pub copies: HashMap<Address, Address>,
}

impl ArbitraryStorage {
    /// Marks an address with arbitrary storage.
    pub fn mark_arbitrary(&mut self, address: &Address) {
        self.values.insert(*address, HashMap::default());
    }

    /// Maps an address that copies storage with the arbitrary storage address.
    pub fn mark_copy(&mut self, from: &Address, to: &Address) {
        if self.values.contains_key(from) {
            self.copies.insert(*to, *from);
        }
    }

    /// Saves arbitrary storage value for a given address:
    /// - store value in changed values cache.
    /// - update account's storage with given value.
    pub fn save(&mut self, ecx: InnerEcx, address: Address, slot: U256, data: U256) {
        self.values.get_mut(&address).expect("missing arbitrary address entry").insert(slot, data);
        if let Ok(mut account) = ecx.load_account(address) {
            account.storage.insert(slot, EvmStorageSlot::new(data));
        }
    }

    /// Copies arbitrary storage value from source address to the given target address:
    /// - if a value is present in arbitrary values cache, then update target storage and return
    ///   existing value.
    /// - if no value was yet generated for given slot, then save new value in cache and update both
    ///   source and target storages.
    pub fn copy(&mut self, ecx: InnerEcx, target: Address, slot: U256, new_value: U256) -> U256 {
        let source = self.copies.get(&target).expect("missing arbitrary copy target entry");
        let storage_cache = self.values.get_mut(source).expect("missing arbitrary source storage");
        let value = match storage_cache.get(&slot) {
            Some(value) => *value,
            None => {
                storage_cache.insert(slot, new_value);
                // Update source storage with new value.
                if let Ok(mut source_account) = ecx.load_account(*source) {
                    source_account.storage.insert(slot, EvmStorageSlot::new(new_value));
                }
                new_value
            }
        };
        // Update target storage with new value.
        if let Ok(mut target_account) = ecx.load_account(target) {
            target_account.storage.insert(slot, EvmStorageSlot::new(value));
        }
        value
    }
}

/// List of transactions that can be broadcasted.
pub type BroadcastableTransactions = VecDeque<BroadcastableTransaction>;

/// An EVM inspector that handles calls to various cheatcodes, each with their own behavior.
///
/// Cheatcodes can be called by contracts during execution to modify the VM environment, such as
/// mocking addresses, signatures and altering call reverts.
///
/// Executing cheatcodes can be very powerful. Most cheatcodes are limited to evm internals, but
/// there are also cheatcodes like `ffi` which can execute arbitrary commands or `writeFile` and
/// `readFile` which can manipulate files of the filesystem. Therefore, several restrictions are
/// implemented for these cheatcodes:
/// - `ffi`, and file cheatcodes are _always_ opt-in (via foundry config) and never enabled by
///   default: all respective cheatcode handlers implement the appropriate checks
/// - File cheatcodes require explicit permissions which paths are allowed for which operation, see
///   `Config.fs_permission`
/// - Only permitted accounts are allowed to execute cheatcodes in forking mode, this ensures no
///   contract deployed on the live network is able to execute cheatcodes by simply calling the
///   cheatcode address: by default, the caller, test contract and newly deployed contracts are
///   allowed to execute cheatcodes
#[derive(Clone, Debug)]
pub struct Cheatcodes {
    /// The block environment
    ///
    /// Used in the cheatcode handler to overwrite the block environment separately from the
    /// execution block environment.
    pub block: Option<BlockEnv>,

    /// The gas price.
    ///
    /// Used in the cheatcode handler to overwrite the gas price separately from the gas price
    /// in the execution environment.
    pub gas_price: Option<U256>,

    /// Address labels
    pub labels: AddressHashMap<String>,

    /// Prank information
    pub prank: Option<Prank>,

    /// Expected revert information
    pub expected_revert: Option<ExpectedRevert>,

    /// Assume next call can revert and discard fuzz run if it does.
    pub assume_no_revert: Option<AssumeNoRevert>,

    /// Additional diagnostic for reverts
    pub fork_revert_diagnostic: Option<RevertDiagnostic>,

    /// Recorded storage reads and writes
    pub accesses: Option<RecordAccess>,

    /// Recorded account accesses (calls, creates) organized by relative call depth, where the
    /// topmost vector corresponds to accesses at the depth at which account access recording
    /// began. Each vector in the matrix represents a list of accesses at a specific call
    /// depth. Once that call context has ended, the last vector is removed from the matrix and
    /// merged into the previous vector.
    pub recorded_account_diffs_stack: Option<Vec<Vec<AccountAccess>>>,

    /// The information of the debug step recording.
    pub record_debug_steps_info: Option<RecordDebugStepInfo>,

    /// Recorded logs
    pub recorded_logs: Option<Vec<crate::Vm::Log>>,

    /// Mocked calls
    // **Note**: inner must a BTreeMap because of special `Ord` impl for `MockCallDataContext`
    pub mocked_calls: HashMap<Address, BTreeMap<MockCallDataContext, VecDeque<MockCallReturnData>>>,

    /// Mocked functions. Maps target address to be mocked to pair of (calldata, mock address).
    pub mocked_functions: HashMap<Address, HashMap<Bytes, Address>>,

    /// Expected calls
    pub expected_calls: ExpectedCallTracker,
    /// Expected emits
    pub expected_emits: VecDeque<ExpectedEmit>,

    /// Map of context depths to memory offset ranges that may be written to within the call depth.
    pub allowed_mem_writes: HashMap<u64, Vec<Range<u64>>>,

    /// Current broadcasting information
    pub broadcast: Option<Broadcast>,

    /// Scripting based transactions
    pub broadcastable_transactions: BroadcastableTransactions,

    /// Additional, user configurable context this Inspector has access to when inspecting a call
    pub config: Arc<CheatsConfig>,

    /// Test-scoped context holding data that needs to be reset every test run
    pub context: Context,

    /// Whether to commit FS changes such as file creations, writes and deletes.
    /// Used to prevent duplicate changes file executing non-committing calls.
    pub fs_commit: bool,

    /// Serialized JSON values.
    // **Note**: both must a BTreeMap to ensure the order of the keys is deterministic.
    pub serialized_jsons: BTreeMap<String, BTreeMap<String, Value>>,

    /// All recorded ETH `deal`s.
    pub eth_deals: Vec<DealRecord>,

    /// Gas metering state.
    pub gas_metering: GasMetering,

    /// Contains gas snapshots made over the course of a test suite.
    // **Note**: both must a BTreeMap to ensure the order of the keys is deterministic.
    pub gas_snapshots: BTreeMap<String, BTreeMap<String, String>>,

    /// Mapping slots.
    pub mapping_slots: Option<AddressHashMap<MappingSlots>>,

    /// The current program counter.
    pub pc: usize,
    /// Breakpoints supplied by the `breakpoint` cheatcode.
    /// `char -> (address, pc)`
    pub breakpoints: Breakpoints,

    /// Optional cheatcodes `TestRunner`. Used for generating random values from uint and int
    /// strategies.
    test_runner: Option<TestRunner>,

    /// Ignored traces.
    pub ignored_traces: IgnoredTraces,

    /// Addresses with arbitrary storage.
    pub arbitrary_storage: Option<ArbitraryStorage>,

    /// Deprecated cheatcodes mapped to the reason. Used to report warnings on test results.
    pub deprecated: HashMap<&'static str, Option<&'static str>>,
    /// Unlocked wallets used in scripts and testing of scripts.
    pub wallets: Option<Wallets>,
}

// This is not derived because calling this in `fn new` with `..Default::default()` creates a second
// `CheatsConfig` which is unused, and inside it `ProjectPathsConfig` is relatively expensive to
// create.
impl Default for Cheatcodes {
    fn default() -> Self {
        Self::new(Arc::default())
    }
}

impl Cheatcodes {
    /// Creates a new `Cheatcodes` with the given settings.
    pub fn new(config: Arc<CheatsConfig>) -> Self {
        Self {
            fs_commit: true,
            labels: config.labels.clone(),
            config,
            block: Default::default(),
            gas_price: Default::default(),
            prank: Default::default(),
            expected_revert: Default::default(),
            assume_no_revert: Default::default(),
            fork_revert_diagnostic: Default::default(),
            accesses: Default::default(),
            recorded_account_diffs_stack: Default::default(),
            recorded_logs: Default::default(),
            record_debug_steps_info: Default::default(),
            mocked_calls: Default::default(),
            mocked_functions: Default::default(),
            expected_calls: Default::default(),
            expected_emits: Default::default(),
            allowed_mem_writes: Default::default(),
            broadcast: Default::default(),
            broadcastable_transactions: Default::default(),
            context: Default::default(),
            serialized_jsons: Default::default(),
            eth_deals: Default::default(),
            gas_metering: Default::default(),
            gas_snapshots: Default::default(),
            mapping_slots: Default::default(),
            pc: Default::default(),
            breakpoints: Default::default(),
            test_runner: Default::default(),
            ignored_traces: Default::default(),
            arbitrary_storage: Default::default(),
            deprecated: Default::default(),
            wallets: Default::default(),
        }
    }

    /// Returns the configured wallets if available, else creates a new instance.
    pub fn wallets(&mut self) -> &Wallets {
        self.wallets.get_or_insert(Wallets::new(MultiWallet::default(), None))
    }

    /// Sets the unlocked wallets.
    pub fn set_wallets(&mut self, wallets: Wallets) {
        self.wallets = Some(wallets);
    }

    /// Decodes the input data and applies the cheatcode.
    fn apply_cheatcode(
        &mut self,
        ecx: Ecx,
        call: &CallInputs,
        executor: &mut dyn CheatcodesExecutor,
    ) -> Result {
        // decode the cheatcode call
        let decoded = Vm::VmCalls::abi_decode(&call.input, false).map_err(|e| {
            if let alloy_sol_types::Error::UnknownSelector { name: _, selector } = e {
                let msg = format!(
                    "unknown cheatcode with selector {selector}; \
                     you may have a mismatch between the `Vm` interface (likely in `forge-std`) \
                     and the `forge` version"
                );
                return alloy_sol_types::Error::Other(std::borrow::Cow::Owned(msg));
            }
            e
        })?;

        let caller = call.caller;

        // ensure the caller is allowed to execute cheatcodes,
        // but only if the backend is in forking mode
        ecx.db.ensure_cheatcode_access_forking_mode(&caller)?;

        apply_dispatch(
            &decoded,
            &mut CheatsCtxt {
                state: self,
                ecx: &mut ecx.inner,
                precompiles: &mut ecx.precompiles,
                gas_limit: call.gas_limit,
                caller,
            },
            executor,
        )
    }

    /// Grants cheat code access for new contracts if the caller also has
    /// cheatcode access or the new contract is created in top most call.
    ///
    /// There may be cheatcodes in the constructor of the new contract, in order to allow them
    /// automatically we need to determine the new address.
    fn allow_cheatcodes_on_create(&self, ecx: InnerEcx, caller: Address, created_address: Address) {
        if ecx.journaled_state.depth <= 1 || ecx.db.has_cheatcode_access(&caller) {
            ecx.db.allow_cheatcode_access(created_address);
        }
    }

    /// Called when there was a revert.
    ///
    /// Cleanup any previously applied cheatcodes that altered the state in such a way that revm's
    /// revert would run into issues.
    pub fn on_revert(&mut self, ecx: Ecx) {
        trace!(deals=?self.eth_deals.len(), "rolling back deals");

        // Delay revert clean up until expected revert is handled, if set.
        if self.expected_revert.is_some() {
            return;
        }

        // we only want to apply cleanup top level
        if ecx.journaled_state.depth() > 0 {
            return;
        }

        // Roll back all previously applied deals
        // This will prevent overflow issues in revm's [`JournaledState::journal_revert`] routine
        // which rolls back any transfers.
        while let Some(record) = self.eth_deals.pop() {
            if let Some(acc) = ecx.journaled_state.state.get_mut(&record.address) {
                acc.info.balance = record.old_balance;
            }
        }
    }

    // common create functionality for both legacy and EOF.
    fn create_common<Input>(&mut self, ecx: Ecx, mut input: Input) -> Option<CreateOutcome>
    where
        Input: CommonCreateInput,
    {
        let ecx = &mut ecx.inner;
        let gas = Gas::new(input.gas_limit());

        // Apply our prank
        if let Some(prank) = &self.prank {
            if ecx.journaled_state.depth() >= prank.depth && input.caller() == prank.prank_caller {
                // At the target depth we set `msg.sender`
                if ecx.journaled_state.depth() == prank.depth {
                    input.set_caller(prank.new_caller);
                }

                // At the target depth, or deeper, we set `tx.origin`
                if let Some(new_origin) = prank.new_origin {
                    ecx.env.tx.caller = new_origin;
                }
            }
        }

        // Apply our broadcast
        if let Some(broadcast) = &self.broadcast {
            if ecx.journaled_state.depth() >= broadcast.depth &&
                input.caller() == broadcast.original_caller
            {
                if let Err(err) =
                    ecx.journaled_state.load_account(broadcast.new_origin, &mut ecx.db)
                {
                    return Some(CreateOutcome {
                        result: InterpreterResult {
                            result: InstructionResult::Revert,
                            output: Error::encode(err),
                            gas,
                        },
                        address: None,
                    });
                }

                ecx.env.tx.caller = broadcast.new_origin;

                if ecx.journaled_state.depth() == broadcast.depth {
                    input.set_caller(broadcast.new_origin);
                    let is_fixed_gas_limit = check_if_fixed_gas_limit(ecx, input.gas_limit());

                    let account = &ecx.journaled_state.state()[&broadcast.new_origin];
                    self.broadcastable_transactions.push_back(BroadcastableTransaction {
                        rpc: ecx.db.active_fork_url(),
                        transaction: TransactionRequest {
                            from: Some(broadcast.new_origin),
                            to: None,
                            value: Some(input.value()),
                            input: TransactionInput::new(input.init_code()),
                            nonce: Some(account.info.nonce),
                            gas: if is_fixed_gas_limit { Some(input.gas_limit()) } else { None },
                            ..Default::default()
                        }
                        .into(),
                    });

                    input.log_debug(self, &input.scheme().unwrap_or(CreateScheme::Create));
                }
            }
        }

        // Allow cheatcodes from the address of the new contract
        let address = input.allow_cheatcodes(self, ecx);

        // If `recordAccountAccesses` has been called, record the create
        if let Some(recorded_account_diffs_stack) = &mut self.recorded_account_diffs_stack {
            recorded_account_diffs_stack.push(vec![AccountAccess {
                chainInfo: crate::Vm::ChainInfo {
                    forkId: ecx.db.active_fork_id().unwrap_or_default(),
                    chainId: U256::from(ecx.env.cfg.chain_id),
                },
                accessor: input.caller(),
                account: address,
                kind: crate::Vm::AccountAccessKind::Create,
                initialized: true,
                oldBalance: U256::ZERO, // updated on (eof)create_end
                newBalance: U256::ZERO, // updated on (eof)create_end
                value: input.value(),
                data: input.init_code(),
                reverted: false,
                deployedCode: Bytes::new(), // updated on (eof)create_end
                storageAccesses: vec![],    // updated on (eof)create_end
                depth: ecx.journaled_state.depth(),
            }]);
        }

        None
    }

    // common create_end functionality for both legacy and EOF.
    fn create_end_common(&mut self, ecx: Ecx, mut outcome: CreateOutcome) -> CreateOutcome
where {
        let ecx = &mut ecx.inner;

        // Clean up pranks
        if let Some(prank) = &self.prank {
            if ecx.journaled_state.depth() == prank.depth {
                ecx.env.tx.caller = prank.prank_origin;

                // Clean single-call prank once we have returned to the original depth
                if prank.single_call {
                    std::mem::take(&mut self.prank);
                }
            }
        }

        // Clean up broadcasts
        if let Some(broadcast) = &self.broadcast {
            if ecx.journaled_state.depth() == broadcast.depth {
                ecx.env.tx.caller = broadcast.original_origin;

                // Clean single-call broadcast once we have returned to the original depth
                if broadcast.single_call {
                    std::mem::take(&mut self.broadcast);
                }
            }
        }

        // Handle expected reverts
        if let Some(expected_revert) = &self.expected_revert {
            if ecx.journaled_state.depth() <= expected_revert.depth &&
                matches!(expected_revert.kind, ExpectedRevertKind::Default)
            {
                let expected_revert = std::mem::take(&mut self.expected_revert).unwrap();
                return match expect::handle_expect_revert(
                    false,
                    true,
                    &expected_revert,
                    outcome.result.result,
                    outcome.result.output.clone(),
                    &self.config.available_artifacts,
                ) {
                    Ok((address, retdata)) => {
                        outcome.result.result = InstructionResult::Return;
                        outcome.result.output = retdata;
                        outcome.address = address;
                        outcome
                    }
                    Err(err) => {
                        outcome.result.result = InstructionResult::Revert;
                        outcome.result.output = err.abi_encode().into();
                        outcome
                    }
                };
            }
        }

        // If `startStateDiffRecording` has been called, update the `reverted` status of the
        // previous call depth's recorded accesses, if any
        if let Some(recorded_account_diffs_stack) = &mut self.recorded_account_diffs_stack {
            // The root call cannot be recorded.
            if ecx.journaled_state.depth() > 0 {
                let mut last_depth =
                    recorded_account_diffs_stack.pop().expect("missing CREATE account accesses");
                // Update the reverted status of all deeper calls if this call reverted, in
                // accordance with EVM behavior
                if outcome.result.is_revert() {
                    last_depth.iter_mut().for_each(|element| {
                        element.reverted = true;
                        element
                            .storageAccesses
                            .iter_mut()
                            .for_each(|storage_access| storage_access.reverted = true);
                    })
                }
                let create_access = last_depth.first_mut().expect("empty AccountAccesses");
                // Assert that we're at the correct depth before recording post-create state
                // changes. Depending on what depth the cheat was called at, there
                // may not be any pending calls to update if execution has
                // percolated up to a higher depth.
                if create_access.depth == ecx.journaled_state.depth() {
                    debug_assert_eq!(
                        create_access.kind as u8,
                        crate::Vm::AccountAccessKind::Create as u8
                    );
                    if let Some(address) = outcome.address {
                        if let Ok(created_acc) =
                            ecx.journaled_state.load_account(address, &mut ecx.db)
                        {
                            create_access.newBalance = created_acc.info.balance;
                            create_access.deployedCode =
                                created_acc.info.code.clone().unwrap_or_default().original_bytes();
                        }
                    }
                }
                // Merge the last depth's AccountAccesses into the AccountAccesses at the current
                // depth, or push them back onto the pending vector if higher depths were not
                // recorded. This preserves ordering of accesses.
                if let Some(last) = recorded_account_diffs_stack.last_mut() {
                    last.append(&mut last_depth);
                } else {
                    recorded_account_diffs_stack.push(last_depth);
                }
            }
        }
        outcome
    }

    pub fn call_with_executor(
        &mut self,
        ecx: Ecx,
        call: &mut CallInputs,
        executor: &mut impl CheatcodesExecutor,
    ) -> Option<CallOutcome> {
        let gas = Gas::new(call.gas_limit);

        // At the root call to test function or script `run()`/`setUp()` functions, we are
        // decreasing sender nonce to ensure that it matches on-chain nonce once we start
        // broadcasting.
        if ecx.journaled_state.depth == 0 {
            let sender = ecx.env.tx.caller;
            let account = match super::evm::journaled_account(ecx, sender) {
                Ok(account) => account,
                Err(err) => {
                    return Some(CallOutcome {
                        result: InterpreterResult {
                            result: InstructionResult::Revert,
                            output: err.abi_encode().into(),
                            gas,
                        },
                        memory_offset: call.return_memory_offset.clone(),
                    })
                }
            };
            let prev = account.info.nonce;
            account.info.nonce = prev.saturating_sub(1);

            trace!(target: "cheatcodes", %sender, nonce=account.info.nonce, prev, "corrected nonce");
        }

        if call.target_address == CHEATCODE_ADDRESS {
            return match self.apply_cheatcode(ecx, call, executor) {
                Ok(retdata) => Some(CallOutcome {
                    result: InterpreterResult {
                        result: InstructionResult::Return,
                        output: retdata.into(),
                        gas,
                    },
                    memory_offset: call.return_memory_offset.clone(),
                }),
                Err(err) => Some(CallOutcome {
                    result: InterpreterResult {
                        result: InstructionResult::Revert,
                        output: err.abi_encode().into(),
                        gas,
                    },
                    memory_offset: call.return_memory_offset.clone(),
                }),
            };
        }

        let ecx = &mut ecx.inner;

        if call.target_address == HARDHAT_CONSOLE_ADDRESS {
            return None;
        }

        // Handle expected calls

        // Grab the different calldatas expected.
        if let Some(expected_calls_for_target) = self.expected_calls.get_mut(&call.bytecode_address)
        {
            // Match every partial/full calldata
            for (calldata, (expected, actual_count)) in expected_calls_for_target {
                // Increment actual times seen if...
                // The calldata is at most, as big as this call's input, and
                if calldata.len() <= call.input.len() &&
                    // Both calldata match, taking the length of the assumed smaller one (which will have at least the selector), and
                    *calldata == call.input[..calldata.len()] &&
                    // The value matches, if provided
                    expected
                        .value
                        .map_or(true, |value| Some(value) == call.transfer_value()) &&
                    // The gas matches, if provided
                    expected.gas.map_or(true, |gas| gas == call.gas_limit) &&
                    // The minimum gas matches, if provided
                    expected.min_gas.map_or(true, |min_gas| min_gas <= call.gas_limit)
                {
                    *actual_count += 1;
                }
            }
        }

        // Handle mocked calls
        if let Some(mocks) = self.mocked_calls.get_mut(&call.bytecode_address) {
            let ctx =
                MockCallDataContext { calldata: call.input.clone(), value: call.transfer_value() };

            if let Some(return_data_queue) = match mocks.get_mut(&ctx) {
                Some(queue) => Some(queue),
                None => mocks
                    .iter_mut()
                    .find(|(mock, _)| {
                        call.input.get(..mock.calldata.len()) == Some(&mock.calldata[..]) &&
                            mock.value.map_or(true, |value| Some(value) == call.transfer_value())
                    })
                    .map(|(_, v)| v),
            } {
                if let Some(return_data) = if return_data_queue.len() == 1 {
                    // If the mocked calls stack has a single element in it, don't empty it
                    return_data_queue.front().map(|x| x.to_owned())
                } else {
                    // Else, we pop the front element
                    return_data_queue.pop_front()
                } {
                    return Some(CallOutcome {
                        result: InterpreterResult {
                            result: return_data.ret_type,
                            output: return_data.data,
                            gas,
                        },
                        memory_offset: call.return_memory_offset.clone(),
                    });
                }
            }
        }

        // Apply our prank
        if let Some(prank) = &self.prank {
            if ecx.journaled_state.depth() >= prank.depth && call.caller == prank.prank_caller {
                let mut prank_applied = false;

                // At the target depth we set `msg.sender`
                if ecx.journaled_state.depth() == prank.depth {
                    call.caller = prank.new_caller;
                    prank_applied = true;
                }

                // At the target depth, or deeper, we set `tx.origin`
                if let Some(new_origin) = prank.new_origin {
                    ecx.env.tx.caller = new_origin;
                    prank_applied = true;
                }

                // If prank applied for first time, then update
                if prank_applied {
                    if let Some(applied_prank) = prank.first_time_applied() {
                        self.prank = Some(applied_prank);
                    }
                }
            }
        }

        // Apply our broadcast
        if let Some(broadcast) = &self.broadcast {
            // We only apply a broadcast *to a specific depth*.
            //
            // We do this because any subsequent contract calls *must* exist on chain and
            // we only want to grab *this* call, not internal ones
            if ecx.journaled_state.depth() == broadcast.depth &&
                call.caller == broadcast.original_caller
            {
                // At the target depth we set `msg.sender` & tx.origin.
                // We are simulating the caller as being an EOA, so *both* must be set to the
                // broadcast.origin.
                ecx.env.tx.caller = broadcast.new_origin;

                call.caller = broadcast.new_origin;
                // Add a `legacy` transaction to the VecDeque. We use a legacy transaction here
                // because we only need the from, to, value, and data. We can later change this
                // into 1559, in the cli package, relatively easily once we
                // know the target chain supports EIP-1559.
                if !call.is_static {
                    if let Err(err) = ecx.load_account(broadcast.new_origin) {
                        return Some(CallOutcome {
                            result: InterpreterResult {
                                result: InstructionResult::Revert,
                                output: Error::encode(err),
                                gas,
                            },
                            memory_offset: call.return_memory_offset.clone(),
                        });
                    }

                    let is_fixed_gas_limit = check_if_fixed_gas_limit(ecx, call.gas_limit);

                    let account =
                        ecx.journaled_state.state().get_mut(&broadcast.new_origin).unwrap();

                    self.broadcastable_transactions.push_back(BroadcastableTransaction {
                        rpc: ecx.db.active_fork_url(),
                        transaction: TransactionRequest {
                            from: Some(broadcast.new_origin),
                            to: Some(TxKind::from(Some(call.target_address))),
                            value: call.transfer_value(),
                            input: TransactionInput::new(call.input.clone()),
                            nonce: Some(account.info.nonce),
                            gas: if is_fixed_gas_limit { Some(call.gas_limit) } else { None },
                            ..Default::default()
                        }
                        .into(),
                    });
                    debug!(target: "cheatcodes", tx=?self.broadcastable_transactions.back().unwrap(), "broadcastable call");

                    // Explicitly increment nonce if calls are not isolated.
                    if !self.config.evm_opts.isolate {
                        let prev = account.info.nonce;
                        account.info.nonce += 1;
                        debug!(target: "cheatcodes", address=%broadcast.new_origin, nonce=prev+1, prev, "incremented nonce");
                    }
                } else if broadcast.single_call {
                    let msg =
                    "`staticcall`s are not allowed after `broadcast`; use `startBroadcast` instead";
                    return Some(CallOutcome {
                        result: InterpreterResult {
                            result: InstructionResult::Revert,
                            output: Error::encode(msg),
                            gas,
                        },
                        memory_offset: call.return_memory_offset.clone(),
                    });
                }
            }
        }

        // Record called accounts if `startStateDiffRecording` has been called
        if let Some(recorded_account_diffs_stack) = &mut self.recorded_account_diffs_stack {
            // Determine if account is "initialized," ie, it has a non-zero balance, a non-zero
            // nonce, a non-zero KECCAK_EMPTY codehash, or non-empty code
            let initialized;
            let old_balance;
            if let Ok(acc) = ecx.load_account(call.target_address) {
                initialized = acc.info.exists();
                old_balance = acc.info.balance;
            } else {
                initialized = false;
                old_balance = U256::ZERO;
            }
            let kind = match call.scheme {
                CallScheme::Call => crate::Vm::AccountAccessKind::Call,
                CallScheme::CallCode => crate::Vm::AccountAccessKind::CallCode,
                CallScheme::DelegateCall => crate::Vm::AccountAccessKind::DelegateCall,
                CallScheme::StaticCall => crate::Vm::AccountAccessKind::StaticCall,
                CallScheme::ExtCall => crate::Vm::AccountAccessKind::Call,
                CallScheme::ExtStaticCall => crate::Vm::AccountAccessKind::StaticCall,
                CallScheme::ExtDelegateCall => crate::Vm::AccountAccessKind::DelegateCall,
            };
            // Record this call by pushing it to a new pending vector; all subsequent calls at
            // that depth will be pushed to the same vector. When the call ends, the
            // RecordedAccountAccess (and all subsequent RecordedAccountAccesses) will be
            // updated with the revert status of this call, since the EVM does not mark accounts
            // as "warm" if the call from which they were accessed is reverted
            recorded_account_diffs_stack.push(vec![AccountAccess {
                chainInfo: crate::Vm::ChainInfo {
                    forkId: ecx.db.active_fork_id().unwrap_or_default(),
                    chainId: U256::from(ecx.env.cfg.chain_id),
                },
                accessor: call.caller,
                account: call.bytecode_address,
                kind,
                initialized,
                oldBalance: old_balance,
                newBalance: U256::ZERO, // updated on call_end
                value: call.call_value(),
                data: call.input.clone(),
                reverted: false,
                deployedCode: Bytes::new(),
                storageAccesses: vec![], // updated on step
                depth: ecx.journaled_state.depth(),
            }]);
        }

        None
    }

    pub fn rng(&mut self) -> &mut impl Rng {
        self.test_runner().rng()
    }

    pub fn test_runner(&mut self) -> &mut TestRunner {
        self.test_runner.get_or_insert_with(|| match self.config.seed {
            Some(seed) => TestRunner::new_with_rng(
                proptest::test_runner::Config::default(),
                TestRng::from_seed(RngAlgorithm::ChaCha, &seed.to_be_bytes::<32>()),
            ),
            None => TestRunner::new(proptest::test_runner::Config::default()),
        })
    }

    /// Returns existing or set a default `ArbitraryStorage` option.
    /// Used by `setArbitraryStorage` cheatcode to track addresses with arbitrary storage.
    pub fn arbitrary_storage(&mut self) -> &mut ArbitraryStorage {
        self.arbitrary_storage.get_or_insert_with(ArbitraryStorage::default)
    }

    /// Whether the given address has arbitrary storage.
    pub fn has_arbitrary_storage(&self, address: &Address) -> bool {
        match &self.arbitrary_storage {
            Some(storage) => storage.values.contains_key(address),
            None => false,
        }
    }

    /// Whether the given address is a copy of an address with arbitrary storage.
    pub fn is_arbitrary_storage_copy(&self, address: &Address) -> bool {
        match &self.arbitrary_storage {
            Some(storage) => storage.copies.contains_key(address),
            None => false,
        }
    }
}

impl Inspector<&mut dyn DatabaseExt> for Cheatcodes {
    #[inline]
    fn initialize_interp(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
        // When the first interpreter is initialized we've circumvented the balance and gas checks,
        // so we apply our actual block data with the correct fees and all.
        if let Some(block) = self.block.take() {
            ecx.env.block = block;
        }
        if let Some(gas_price) = self.gas_price.take() {
            ecx.env.tx.gas_price = gas_price;
        }

        // Record gas for current frame.
        if self.gas_metering.paused {
            self.gas_metering.paused_frames.push(interpreter.gas);
        }
    }

    #[inline]
    fn step(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
        self.pc = interpreter.program_counter();

        // `pauseGasMetering`: pause / resume interpreter gas.
        if self.gas_metering.paused {
            self.meter_gas(interpreter);
        }

        // `resetGasMetering`: reset interpreter gas.
        if self.gas_metering.reset {
            self.meter_gas_reset(interpreter);
        }

        // `record`: record storage reads and writes.
        if self.accesses.is_some() {
            self.record_accesses(interpreter);
        }

        // `startStateDiffRecording`: record granular ordered storage accesses.
        if self.recorded_account_diffs_stack.is_some() {
            self.record_state_diffs(interpreter, ecx);
        }

        // `expectSafeMemory`: check if the current opcode is allowed to interact with memory.
        if !self.allowed_mem_writes.is_empty() {
            self.check_mem_opcodes(interpreter, ecx.journaled_state.depth());
        }

        // `startMappingRecording`: record SSTORE and KECCAK256.
        if let Some(mapping_slots) = &mut self.mapping_slots {
            mapping::step(mapping_slots, interpreter);
        }

        // `snapshotGas*`: take a snapshot of the current gas.
        if self.gas_metering.recording {
            self.meter_gas_record(interpreter, ecx);
        }
    }

    #[inline]
    fn step_end(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
        if self.gas_metering.paused {
            self.meter_gas_end(interpreter);
        }

        if self.gas_metering.touched {
            self.meter_gas_check(interpreter);
        }

        // `setArbitraryStorage` and `copyStorage`: add arbitrary values to storage.
        if self.arbitrary_storage.is_some() {
            self.arbitrary_storage_end(interpreter, ecx);
        }
    }

    fn log(&mut self, interpreter: &mut Interpreter, _ecx: Ecx, log: &Log) {
        if !self.expected_emits.is_empty() {
            expect::handle_expect_emit(self, log, interpreter);
        }

        // `recordLogs`
        if let Some(storage_recorded_logs) = &mut self.recorded_logs {
            storage_recorded_logs.push(Vm::Log {
                topics: log.data.topics().to_vec(),
                data: log.data.data.clone(),
                emitter: log.address,
            });
        }
    }

    fn call(&mut self, ecx: Ecx, inputs: &mut CallInputs) -> Option<CallOutcome> {
        Self::call_with_executor(self, ecx, inputs, &mut TransparentCheatcodesExecutor)
    }

    fn call_end(&mut self, ecx: Ecx, call: &CallInputs, mut outcome: CallOutcome) -> CallOutcome {
        let ecx = &mut ecx.inner;
        let cheatcode_call = call.target_address == CHEATCODE_ADDRESS ||
            call.target_address == HARDHAT_CONSOLE_ADDRESS;

        // Clean up pranks/broadcasts if it's not a cheatcode call end. We shouldn't do
        // it for cheatcode calls because they are not applied for cheatcodes in the `call` hook.
        // This should be placed before the revert handling, because we might exit early there
        if !cheatcode_call {
            // Clean up pranks
            if let Some(prank) = &self.prank {
                if ecx.journaled_state.depth() == prank.depth {
                    ecx.env.tx.caller = prank.prank_origin;

                    // Clean single-call prank once we have returned to the original depth
                    if prank.single_call {
                        let _ = self.prank.take();
                    }
                }
            }

            // Clean up broadcast
            if let Some(broadcast) = &self.broadcast {
                if ecx.journaled_state.depth() == broadcast.depth {
                    ecx.env.tx.caller = broadcast.original_origin;

                    // Clean single-call broadcast once we have returned to the original depth
                    if broadcast.single_call {
                        let _ = self.broadcast.take();
                    }
                }
            }
        }

        // Handle assume not revert cheatcode.
        if let Some(assume_no_revert) = &self.assume_no_revert {
            if ecx.journaled_state.depth() == assume_no_revert.depth && !cheatcode_call {
                // Discard run if we're at the same depth as cheatcode and call reverted.
                if outcome.result.is_revert() {
                    outcome.result.output = Error::from(MAGIC_ASSUME).abi_encode().into();
                    return outcome;
                }
                // Call didn't revert, reset `assume_no_revert` state.
                self.assume_no_revert = None;
            }
        }

        // Handle expected reverts.
        if let Some(expected_revert) = &mut self.expected_revert {
            // Record current reverter address before processing the expect revert if call reverted,
            // expect revert is set with expected reverter address and no actual reverter set yet.
            if outcome.result.is_revert() &&
                expected_revert.reverter.is_some() &&
                expected_revert.reverted_by.is_none()
            {
                expected_revert.reverted_by = Some(call.target_address);
            }

            if ecx.journaled_state.depth() <= expected_revert.depth {
                let needs_processing = match expected_revert.kind {
                    ExpectedRevertKind::Default => !cheatcode_call,
                    // `pending_processing` == true means that we're in the `call_end` hook for
                    // `vm.expectCheatcodeRevert` and shouldn't expect revert here
                    ExpectedRevertKind::Cheatcode { pending_processing } => {
                        cheatcode_call && !pending_processing
                    }
                };

                if needs_processing {
                    let expected_revert = std::mem::take(&mut self.expected_revert).unwrap();
                    return match expect::handle_expect_revert(
                        cheatcode_call,
                        false,
                        &expected_revert,
                        outcome.result.result,
                        outcome.result.output.clone(),
                        &self.config.available_artifacts,
                    ) {
                        Err(error) => {
                            trace!(expected=?expected_revert, ?error, status=?outcome.result.result, "Expected revert mismatch");
                            outcome.result.result = InstructionResult::Revert;
                            outcome.result.output = error.abi_encode().into();
                            outcome
                        }
                        Ok((_, retdata)) => {
                            outcome.result.result = InstructionResult::Return;
                            outcome.result.output = retdata;
                            outcome
                        }
                    };
                }

                // Flip `pending_processing` flag for cheatcode revert expectations, marking that
                // we've exited the `expectCheatcodeRevert` call scope
                if let ExpectedRevertKind::Cheatcode { pending_processing } =
                    &mut self.expected_revert.as_mut().unwrap().kind
                {
                    *pending_processing = false;
                }
            }
        }

        // Exit early for calls to cheatcodes as other logic is not relevant for cheatcode
        // invocations
        if cheatcode_call {
            return outcome;
        }

        // Record the gas usage of the call, this allows the `lastCallGas` cheatcode to
        // retrieve the gas usage of the last call.
        let gas = outcome.result.gas;
        self.gas_metering.last_call_gas = Some(crate::Vm::Gas {
            gasLimit: gas.limit(),
            gasTotalUsed: gas.spent(),
            gasMemoryUsed: 0,
            gasRefunded: gas.refunded(),
            gasRemaining: gas.remaining(),
        });

        // If `startStateDiffRecording` has been called, update the `reverted` status of the
        // previous call depth's recorded accesses, if any
        if let Some(recorded_account_diffs_stack) = &mut self.recorded_account_diffs_stack {
            // The root call cannot be recorded.
            if ecx.journaled_state.depth() > 0 {
                let mut last_recorded_depth =
                    recorded_account_diffs_stack.pop().expect("missing CALL account accesses");
                // Update the reverted status of all deeper calls if this call reverted, in
                // accordance with EVM behavior
                if outcome.result.is_revert() {
                    last_recorded_depth.iter_mut().for_each(|element| {
                        element.reverted = true;
                        element
                            .storageAccesses
                            .iter_mut()
                            .for_each(|storage_access| storage_access.reverted = true);
                    })
                }
                let call_access = last_recorded_depth.first_mut().expect("empty AccountAccesses");
                // Assert that we're at the correct depth before recording post-call state changes.
                // Depending on the depth the cheat was called at, there may not be any pending
                // calls to update if execution has percolated up to a higher depth.
                if call_access.depth == ecx.journaled_state.depth() {
                    if let Ok(acc) = ecx.load_account(call.target_address) {
                        debug_assert!(access_is_call(call_access.kind));
                        call_access.newBalance = acc.info.balance;
                    }
                }
                // Merge the last depth's AccountAccesses into the AccountAccesses at the current
                // depth, or push them back onto the pending vector if higher depths were not
                // recorded. This preserves ordering of accesses.
                if let Some(last) = recorded_account_diffs_stack.last_mut() {
                    last.append(&mut last_recorded_depth);
                } else {
                    recorded_account_diffs_stack.push(last_recorded_depth);
                }
            }
        }

        // At the end of the call,
        // we need to check if we've found all the emits.
        // We know we've found all the expected emits in the right order
        // if the queue is fully matched.
        // If it's not fully matched, then either:
        // 1. Not enough events were emitted (we'll know this because the amount of times we
        // inspected events will be less than the size of the queue) 2. The wrong events
        // were emitted (The inspected events should match the size of the queue, but still some
        // events will not be matched)

        // First, check that we're at the call depth where the emits were declared from.
        let should_check_emits = self
            .expected_emits
            .iter()
            .any(|expected| expected.depth == ecx.journaled_state.depth()) &&
            // Ignore staticcalls
            !call.is_static;
        if should_check_emits {
            // Not all emits were matched.
            if self.expected_emits.iter().any(|expected| !expected.found) {
                outcome.result.result = InstructionResult::Revert;
                outcome.result.output = "log != expected log".abi_encode().into();
                return outcome;
            } else {
                // All emits were found, we're good.
                // Clear the queue, as we expect the user to declare more events for the next call
                // if they wanna match further events.
                self.expected_emits.clear()
            }
        }

        // this will ensure we don't have false positives when trying to diagnose reverts in fork
        // mode
        let diag = self.fork_revert_diagnostic.take();

        // if there's a revert and a previous call was diagnosed as fork related revert then we can
        // return a better error here
        if outcome.result.is_revert() {
            if let Some(err) = diag {
                outcome.result.output = Error::encode(err.to_error_msg(&self.labels));
                return outcome;
            }
        }

        // try to diagnose reverts in multi-fork mode where a call is made to an address that does
        // not exist
        if let TxKind::Call(test_contract) = ecx.env.tx.transact_to {
            // if a call to a different contract than the original test contract returned with
            // `Stop` we check if the contract actually exists on the active fork
            if ecx.db.is_forked_mode() &&
                outcome.result.result == InstructionResult::Stop &&
                call.target_address != test_contract
            {
                self.fork_revert_diagnostic =
                    ecx.db.diagnose_revert(call.target_address, &ecx.journaled_state);
            }
        }

        // If the depth is 0, then this is the root call terminating
        if ecx.journaled_state.depth() == 0 {
            // If we already have a revert, we shouldn't run the below logic as it can obfuscate an
            // earlier error that happened first with unrelated information about
            // another error when using cheatcodes.
            if outcome.result.is_revert() {
                return outcome;
            }

            // If there's not a revert, we can continue on to run the last logic for expect*
            // cheatcodes. Match expected calls
            for (address, calldatas) in &self.expected_calls {
                // Loop over each address, and for each address, loop over each calldata it expects.
                for (calldata, (expected, actual_count)) in calldatas {
                    // Grab the values we expect to see
                    let ExpectedCallData { gas, min_gas, value, count, call_type } = expected;

                    let failed = match call_type {
                        // If the cheatcode was called with a `count` argument,
                        // we must check that the EVM performed a CALL with this calldata exactly
                        // `count` times.
                        ExpectedCallType::Count => *count != *actual_count,
                        // If the cheatcode was called without a `count` argument,
                        // we must check that the EVM performed a CALL with this calldata at least
                        // `count` times. The amount of times to check was
                        // the amount of time the cheatcode was called.
                        ExpectedCallType::NonCount => *count > *actual_count,
                    };
                    if failed {
                        let expected_values = [
                            Some(format!("data {}", hex::encode_prefixed(calldata))),
                            value.as_ref().map(|v| format!("value {v}")),
                            gas.map(|g| format!("gas {g}")),
                            min_gas.map(|g| format!("minimum gas {g}")),
                        ]
                        .into_iter()
                        .flatten()
                        .join(", ");
                        let but = if outcome.result.is_ok() {
                            let s = if *actual_count == 1 { "" } else { "s" };
                            format!("was called {actual_count} time{s}")
                        } else {
                            "the call reverted instead; \
                             ensure you're testing the happy path when using `expectCall`"
                                .to_string()
                        };
                        let s = if *count == 1 { "" } else { "s" };
                        let msg = format!(
                            "expected call to {address} with {expected_values} \
                             to be called {count} time{s}, but {but}"
                        );
                        outcome.result.result = InstructionResult::Revert;
                        outcome.result.output = Error::encode(msg);

                        return outcome;
                    }
                }
            }

            // Check if we have any leftover expected emits
            // First, if any emits were found at the root call, then we its ok and we remove them.
            self.expected_emits.retain(|expected| !expected.found);
            // If not empty, we got mismatched emits
            if !self.expected_emits.is_empty() {
                let msg = if outcome.result.is_ok() {
                    "expected an emit, but no logs were emitted afterwards. \
                     you might have mismatched events or not enough events were emitted"
                } else {
                    "expected an emit, but the call reverted instead. \
                     ensure you're testing the happy path when using `expectEmit`"
                };
                outcome.result.result = InstructionResult::Revert;
                outcome.result.output = Error::encode(msg);
                return outcome;
            }
        }

        outcome
    }

    fn create(&mut self, ecx: Ecx, call: &mut CreateInputs) -> Option<CreateOutcome> {
        self.create_common(ecx, call)
    }

    fn create_end(
        &mut self,
        ecx: Ecx,
        _call: &CreateInputs,
        outcome: CreateOutcome,
    ) -> CreateOutcome {
        self.create_end_common(ecx, outcome)
    }

    fn eofcreate(&mut self, ecx: Ecx, call: &mut EOFCreateInputs) -> Option<CreateOutcome> {
        self.create_common(ecx, call)
    }

    fn eofcreate_end(
        &mut self,
        ecx: Ecx,
        _call: &EOFCreateInputs,
        outcome: CreateOutcome,
    ) -> CreateOutcome {
        self.create_end_common(ecx, outcome)
    }
}

impl InspectorExt for Cheatcodes {
    fn should_use_create2_factory(&mut self, ecx: Ecx, inputs: &mut CreateInputs) -> bool {
        if let CreateScheme::Create2 { .. } = inputs.scheme {
            let target_depth = if let Some(prank) = &self.prank {
                prank.depth
            } else if let Some(broadcast) = &self.broadcast {
                broadcast.depth
            } else {
                1
            };

            ecx.journaled_state.depth() == target_depth &&
                (self.broadcast.is_some() || self.config.always_use_create_2_factory)
        } else {
            false
        }
    }
}

impl Cheatcodes {
    #[cold]
    fn meter_gas(&mut self, interpreter: &mut Interpreter) {
        if let Some(paused_gas) = self.gas_metering.paused_frames.last() {
            // Keep gas constant if paused.
            interpreter.gas = *paused_gas;
        } else {
            // Record frame paused gas.
            self.gas_metering.paused_frames.push(interpreter.gas);
        }
    }

    #[cold]
    fn meter_gas_record(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
        if matches!(interpreter.instruction_result, InstructionResult::Continue) {
            self.gas_metering.gas_records.iter_mut().for_each(|record| {
                if ecx.journaled_state.depth() == record.depth {
                    // Skip the first opcode of the first call frame as it includes the gas cost of
                    // creating the snapshot.
                    if self.gas_metering.last_gas_used != 0 {
                        let gas_diff =
                            interpreter.gas.spent().saturating_sub(self.gas_metering.last_gas_used);
                        record.gas_used = record.gas_used.saturating_add(gas_diff);
                    }

                    // Update `last_gas_used` to the current spent gas for the next iteration to
                    // compare against.
                    self.gas_metering.last_gas_used = interpreter.gas.spent();
                }
            });
        }
    }

    #[cold]
    fn meter_gas_end(&mut self, interpreter: &mut Interpreter) {
        // Remove recorded gas if we exit frame.
        if will_exit(interpreter.instruction_result) {
            self.gas_metering.paused_frames.pop();
        }
    }

    #[cold]
    fn meter_gas_reset(&mut self, interpreter: &mut Interpreter) {
        interpreter.gas = Gas::new(interpreter.gas().limit());
        self.gas_metering.reset = false;
    }

    #[cold]
    fn meter_gas_check(&mut self, interpreter: &mut Interpreter) {
        if will_exit(interpreter.instruction_result) {
            // Reset gas if spent is less than refunded.
            // This can happen if gas was paused / resumed or reset.
            // https://github.com/foundry-rs/foundry/issues/4370
            if interpreter.gas.spent() <
                u64::try_from(interpreter.gas.refunded()).unwrap_or_default()
            {
                interpreter.gas = Gas::new(interpreter.gas.limit());
            }
        }
    }

    /// Generates or copies arbitrary values for storage slots.
    /// Invoked in inspector `step_end` (when the current opcode is not executed), if current opcode
    /// to execute is `SLOAD` and storage slot is cold.
    /// Ensures that in next step (when `SLOAD` opcode is executed) an arbitrary value is returned:
    /// - copies the existing arbitrary storage value (or the new generated one if no value in
    ///   cache) from mapped source address to the target address.
    /// - generates arbitrary value and saves it in target address storage.
    #[cold]
    fn arbitrary_storage_end(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
        let (key, target_address) = if interpreter.current_opcode() == op::SLOAD {
            (try_or_return!(interpreter.stack().peek(0)), interpreter.contract().target_address)
        } else {
            return
        };

        let Ok(value) = ecx.sload(target_address, key) else {
            return;
        };

        if value.is_cold && value.data.is_zero() {
            if self.has_arbitrary_storage(&target_address) {
                let arbitrary_value = self.rng().gen();
                self.arbitrary_storage.as_mut().unwrap().save(
                    &mut ecx.inner,
                    target_address,
                    key,
                    arbitrary_value,
                );
            } else if self.is_arbitrary_storage_copy(&target_address) {
                let arbitrary_value = self.rng().gen();
                self.arbitrary_storage.as_mut().unwrap().copy(
                    &mut ecx.inner,
                    target_address,
                    key,
                    arbitrary_value,
                );
            }
        }
    }

    /// Records storage slots reads and writes.
    #[cold]
    fn record_accesses(&mut self, interpreter: &mut Interpreter) {
        let Some(access) = &mut self.accesses else { return };
        match interpreter.current_opcode() {
            op::SLOAD => {
                let key = try_or_return!(interpreter.stack().peek(0));
                access.record_read(interpreter.contract().target_address, key);
            }
            op::SSTORE => {
                let key = try_or_return!(interpreter.stack().peek(0));
                access.record_write(interpreter.contract().target_address, key);
            }
            _ => {}
        }
    }

    #[cold]
    fn record_state_diffs(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
        let Some(account_accesses) = &mut self.recorded_account_diffs_stack else { return };
        match interpreter.current_opcode() {
            op::SELFDESTRUCT => {
                // Ensure that we're not selfdestructing a context recording was initiated on
                let Some(last) = account_accesses.last_mut() else { return };

                // get previous balance and initialized status of the target account
                let target = try_or_return!(interpreter.stack().peek(0));
                let target = Address::from_word(B256::from(target));
                let (initialized, old_balance) = ecx
                    .load_account(target)
                    .map(|account| (account.info.exists(), account.info.balance))
                    .unwrap_or_default();

                // load balance of this account
                let value = ecx
                    .balance(interpreter.contract().target_address)
                    .map(|b| b.data)
                    .unwrap_or(U256::ZERO);

                // register access for the target account
                last.push(crate::Vm::AccountAccess {
                    chainInfo: crate::Vm::ChainInfo {
                        forkId: ecx.db.active_fork_id().unwrap_or_default(),
                        chainId: U256::from(ecx.env.cfg.chain_id),
                    },
                    accessor: interpreter.contract().target_address,
                    account: target,
                    kind: crate::Vm::AccountAccessKind::SelfDestruct,
                    initialized,
                    oldBalance: old_balance,
                    newBalance: old_balance + value,
                    value,
                    data: Bytes::new(),
                    reverted: false,
                    deployedCode: Bytes::new(),
                    storageAccesses: vec![],
                    depth: ecx.journaled_state.depth(),
                });
            }

            op::SLOAD => {
                let Some(last) = account_accesses.last_mut() else { return };

                let key = try_or_return!(interpreter.stack().peek(0));
                let address = interpreter.contract().target_address;

                // Try to include present value for informational purposes, otherwise assume
                // it's not set (zero value)
                let mut present_value = U256::ZERO;
                // Try to load the account and the slot's present value
                if ecx.load_account(address).is_ok() {
                    if let Ok(previous) = ecx.sload(address, key) {
                        present_value = previous.data;
                    }
                }
                let access = crate::Vm::StorageAccess {
                    account: interpreter.contract().target_address,
                    slot: key.into(),
                    isWrite: false,
                    previousValue: present_value.into(),
                    newValue: present_value.into(),
                    reverted: false,
                };
                append_storage_access(last, access, ecx.journaled_state.depth());
            }
            op::SSTORE => {
                let Some(last) = account_accesses.last_mut() else { return };

                let key = try_or_return!(interpreter.stack().peek(0));
                let value = try_or_return!(interpreter.stack().peek(1));
                let address = interpreter.contract().target_address;
                // Try to load the account and the slot's previous value, otherwise, assume it's
                // not set (zero value)
                let mut previous_value = U256::ZERO;
                if ecx.load_account(address).is_ok() {
                    if let Ok(previous) = ecx.sload(address, key) {
                        previous_value = previous.data;
                    }
                }

                let access = crate::Vm::StorageAccess {
                    account: address,
                    slot: key.into(),
                    isWrite: true,
                    previousValue: previous_value.into(),
                    newValue: value.into(),
                    reverted: false,
                };
                append_storage_access(last, access, ecx.journaled_state.depth());
            }

            // Record account accesses via the EXT family of opcodes
            op::EXTCODECOPY | op::EXTCODESIZE | op::EXTCODEHASH | op::BALANCE => {
                let kind = match interpreter.current_opcode() {
                    op::EXTCODECOPY => crate::Vm::AccountAccessKind::Extcodecopy,
                    op::EXTCODESIZE => crate::Vm::AccountAccessKind::Extcodesize,
                    op::EXTCODEHASH => crate::Vm::AccountAccessKind::Extcodehash,
                    op::BALANCE => crate::Vm::AccountAccessKind::Balance,
                    _ => unreachable!(),
                };
                let address =
                    Address::from_word(B256::from(try_or_return!(interpreter.stack().peek(0))));
                let initialized;
                let balance;
                if let Ok(acc) = ecx.load_account(address) {
                    initialized = acc.info.exists();
                    balance = acc.info.balance;
                } else {
                    initialized = false;
                    balance = U256::ZERO;
                }
                let account_access = crate::Vm::AccountAccess {
                    chainInfo: crate::Vm::ChainInfo {
                        forkId: ecx.db.active_fork_id().unwrap_or_default(),
                        chainId: U256::from(ecx.env.cfg.chain_id),
                    },
                    accessor: interpreter.contract().target_address,
                    account: address,
                    kind,
                    initialized,
                    oldBalance: balance,
                    newBalance: balance,
                    value: U256::ZERO,
                    data: Bytes::new(),
                    reverted: false,
                    deployedCode: Bytes::new(),
                    storageAccesses: vec![],
                    depth: ecx.journaled_state.depth(),
                };
                // Record the EXT* call as an account access at the current depth
                // (future storage accesses will be recorded in a new "Resume" context)
                if let Some(last) = account_accesses.last_mut() {
                    last.push(account_access);
                } else {
                    account_accesses.push(vec![account_access]);
                }
            }
            _ => {}
        }
    }

    /// Checks to see if the current opcode can either mutate directly or expand memory.
    ///
    /// If the opcode at the current program counter is a match, check if the modified memory lies
    /// within the allowed ranges. If not, revert and fail the test.
    #[cold]
    fn check_mem_opcodes(&self, interpreter: &mut Interpreter, depth: u64) {
        let Some(ranges) = self.allowed_mem_writes.get(&depth) else {
            return;
        };

        // The `mem_opcode_match` macro is used to match the current opcode against a list of
        // opcodes that can mutate memory (either directly or expansion via reading). If the
        // opcode is a match, the memory offsets that are being written to are checked to be
        // within the allowed ranges. If not, the test is failed and the transaction is
        // reverted. For all opcodes that can mutate memory aside from MSTORE,
        // MSTORE8, and MLOAD, the size and destination offset are on the stack, and
        // the macro expands all of these cases. For MSTORE, MSTORE8, and MLOAD, the
        // size of the memory write is implicit, so these cases are hard-coded.
        macro_rules! mem_opcode_match {
            ($(($opcode:ident, $offset_depth:expr, $size_depth:expr, $writes:expr)),* $(,)?) => {
                match interpreter.current_opcode() {
                    ////////////////////////////////////////////////////////////////
                    //    OPERATIONS THAT CAN EXPAND/MUTATE MEMORY BY WRITING     //
                    ////////////////////////////////////////////////////////////////

                    op::MSTORE => {
                        // The offset of the mstore operation is at the top of the stack.
                        let offset = try_or_return!(interpreter.stack().peek(0)).saturating_to::<u64>();

                        // If none of the allowed ranges contain [offset, offset + 32), memory has been
                        // unexpectedly mutated.
                        if !ranges.iter().any(|range| {
                            range.contains(&offset) && range.contains(&(offset + 31))
                        }) {
                            // SPECIAL CASE: When the compiler attempts to store the selector for
                            // `stopExpectSafeMemory`, this is allowed. It will do so at the current free memory
                            // pointer, which could have been updated to the exclusive upper bound during
                            // execution.
                            let value = try_or_return!(interpreter.stack().peek(1)).to_be_bytes::<32>();
                            if value[..SELECTOR_LEN] == stopExpectSafeMemoryCall::SELECTOR {
                                return
                            }

                            disallowed_mem_write(offset, 32, interpreter, ranges);
                            return
                        }
                    }
                    op::MSTORE8 => {
                        // The offset of the mstore8 operation is at the top of the stack.
                        let offset = try_or_return!(interpreter.stack().peek(0)).saturating_to::<u64>();

                        // If none of the allowed ranges contain the offset, memory has been
                        // unexpectedly mutated.
                        if !ranges.iter().any(|range| range.contains(&offset)) {
                            disallowed_mem_write(offset, 1, interpreter, ranges);
                            return
                        }
                    }

                    ////////////////////////////////////////////////////////////////
                    //        OPERATIONS THAT CAN EXPAND MEMORY BY READING        //
                    ////////////////////////////////////////////////////////////////

                    op::MLOAD => {
                        // The offset of the mload operation is at the top of the stack
                        let offset = try_or_return!(interpreter.stack().peek(0)).saturating_to::<u64>();

                        // If the offset being loaded is >= than the memory size, the
                        // memory is being expanded. If none of the allowed ranges contain
                        // [offset, offset + 32), memory has been unexpectedly mutated.
                        if offset >= interpreter.shared_memory.len() as u64 && !ranges.iter().any(|range| {
                            range.contains(&offset) && range.contains(&(offset + 31))
                        }) {
                            disallowed_mem_write(offset, 32, interpreter, ranges);
                            return
                        }
                    }

                    ////////////////////////////////////////////////////////////////
                    //          OPERATIONS WITH OFFSET AND SIZE ON STACK          //
                    ////////////////////////////////////////////////////////////////

                    op::CALL => {
                        // The destination offset of the operation is the fifth element on the stack.
                        let dest_offset = try_or_return!(interpreter.stack().peek(5)).saturating_to::<u64>();

                        // The size of the data that will be copied is the sixth element on the stack.
                        let size = try_or_return!(interpreter.stack().peek(6)).saturating_to::<u64>();

                        // If none of the allowed ranges contain [dest_offset, dest_offset + size),
                        // memory outside of the expected ranges has been touched. If the opcode
                        // only reads from memory, this is okay as long as the memory is not expanded.
                        let fail_cond = !ranges.iter().any(|range| {
                            range.contains(&dest_offset) &&
                                range.contains(&(dest_offset + size.saturating_sub(1)))
                        });

                        // If the failure condition is met, set the output buffer to a revert string
                        // that gives information about the allowed ranges and revert.
                        if fail_cond {
                            // SPECIAL CASE: When a call to `stopExpectSafeMemory` is performed, this is allowed.
                            // It allocated calldata at the current free memory pointer, and will attempt to read
                            // from this memory region to perform the call.
                            let to = Address::from_word(try_or_return!(interpreter.stack().peek(1)).to_be_bytes::<32>().into());
                            if to == CHEATCODE_ADDRESS {
                                let args_offset = try_or_return!(interpreter.stack().peek(3)).saturating_to::<usize>();
                                let args_size = try_or_return!(interpreter.stack().peek(4)).saturating_to::<usize>();
                                let memory_word = interpreter.shared_memory.slice(args_offset, args_size);
                                if memory_word[..SELECTOR_LEN] == stopExpectSafeMemoryCall::SELECTOR {
                                    return
                                }
                            }

                            disallowed_mem_write(dest_offset, size, interpreter, ranges);
                            return
                        }
                    }

                    $(op::$opcode => {
                        // The destination offset of the operation.
                        let dest_offset = try_or_return!(interpreter.stack().peek($offset_depth)).saturating_to::<u64>();

                        // The size of the data that will be copied.
                        let size = try_or_return!(interpreter.stack().peek($size_depth)).saturating_to::<u64>();

                        // If none of the allowed ranges contain [dest_offset, dest_offset + size),
                        // memory outside of the expected ranges has been touched. If the opcode
                        // only reads from memory, this is okay as long as the memory is not expanded.
                        let fail_cond = !ranges.iter().any(|range| {
                                range.contains(&dest_offset) &&
                                    range.contains(&(dest_offset + size.saturating_sub(1)))
                            }) && ($writes ||
                                [dest_offset, (dest_offset + size).saturating_sub(1)].into_iter().any(|offset| {
                                    offset >= interpreter.shared_memory.len() as u64
                                })
                            );

                        // If the failure condition is met, set the output buffer to a revert string
                        // that gives information about the allowed ranges and revert.
                        if fail_cond {
                            disallowed_mem_write(dest_offset, size, interpreter, ranges);
                            return
                        }
                    })*

                    _ => {}
                }
            }
        }

        // Check if the current opcode can write to memory, and if so, check if the memory
        // being written to is registered as safe to modify.
        mem_opcode_match!(
            (CALLDATACOPY, 0, 2, true),
            (CODECOPY, 0, 2, true),
            (RETURNDATACOPY, 0, 2, true),
            (EXTCODECOPY, 1, 3, true),
            (CALLCODE, 5, 6, true),
            (STATICCALL, 4, 5, true),
            (DELEGATECALL, 4, 5, true),
            (KECCAK256, 0, 1, false),
            (LOG0, 0, 1, false),
            (LOG1, 0, 1, false),
            (LOG2, 0, 1, false),
            (LOG3, 0, 1, false),
            (LOG4, 0, 1, false),
            (CREATE, 1, 2, false),
            (CREATE2, 1, 2, false),
            (RETURN, 0, 1, false),
            (REVERT, 0, 1, false),
        );
    }
}

/// Helper that expands memory, stores a revert string pertaining to a disallowed memory write,
/// and sets the return range to the revert string's location in memory.
///
/// This will set the interpreter's next action to a return with the revert string as the output.
/// And trigger a revert.
fn disallowed_mem_write(
    dest_offset: u64,
    size: u64,
    interpreter: &mut Interpreter,
    ranges: &[Range<u64>],
) {
    let revert_string = format!(
        "memory write at offset 0x{:02X} of size 0x{:02X} not allowed; safe range: {}",
        dest_offset,
        size,
        ranges.iter().map(|r| format!("(0x{:02X}, 0x{:02X}]", r.start, r.end)).join(" U ")
    );

    interpreter.instruction_result = InstructionResult::Revert;
    interpreter.next_action = InterpreterAction::Return {
        result: InterpreterResult {
            output: Error::encode(revert_string),
            gas: interpreter.gas,
            result: InstructionResult::Revert,
        },
    };
}

// Determines if the gas limit on a given call was manually set in the script and should therefore
// not be overwritten by later estimations
fn check_if_fixed_gas_limit(ecx: InnerEcx, call_gas_limit: u64) -> bool {
    // If the gas limit was not set in the source code it is set to the estimated gas left at the
    // time of the call, which should be rather close to configured gas limit.
    // TODO: Find a way to reliably make this determination.
    // For example by generating it in the compilation or EVM simulation process
    U256::from(ecx.env.tx.gas_limit) > ecx.env.block.gas_limit &&
        U256::from(call_gas_limit) <= ecx.env.block.gas_limit
        // Transfers in forge scripts seem to be estimated at 2300 by revm leading to "Intrinsic
        // gas too low" failure when simulated on chain
        && call_gas_limit > 2300
}

/// Returns true if the kind of account access is a call.
fn access_is_call(kind: crate::Vm::AccountAccessKind) -> bool {
    matches!(
        kind,
        crate::Vm::AccountAccessKind::Call |
            crate::Vm::AccountAccessKind::StaticCall |
            crate::Vm::AccountAccessKind::CallCode |
            crate::Vm::AccountAccessKind::DelegateCall
    )
}

/// Appends an AccountAccess that resumes the recording of the current context.
fn append_storage_access(
    last: &mut Vec<AccountAccess>,
    storage_access: crate::Vm::StorageAccess,
    storage_depth: u64,
) {
    // Assert that there's an existing record for the current context.
    if !last.is_empty() && last.first().unwrap().depth < storage_depth {
        // Three cases to consider:
        // 1. If there hasn't been a context switch since the start of this context, then add the
        //    storage access to the current context record.
        // 2. If there's an existing Resume record, then add the storage access to it.
        // 3. Otherwise, create a new Resume record based on the current context.
        if last.len() == 1 {
            last.first_mut().unwrap().storageAccesses.push(storage_access);
        } else {
            let last_record = last.last_mut().unwrap();
            if last_record.kind as u8 == crate::Vm::AccountAccessKind::Resume as u8 {
                last_record.storageAccesses.push(storage_access);
            } else {
                let entry = last.first().unwrap();
                let resume_record = crate::Vm::AccountAccess {
                    chainInfo: crate::Vm::ChainInfo {
                        forkId: entry.chainInfo.forkId,
                        chainId: entry.chainInfo.chainId,
                    },
                    accessor: entry.accessor,
                    account: entry.account,
                    kind: crate::Vm::AccountAccessKind::Resume,
                    initialized: entry.initialized,
                    storageAccesses: vec![storage_access],
                    reverted: entry.reverted,
                    // The remaining fields are defaults
                    oldBalance: U256::ZERO,
                    newBalance: U256::ZERO,
                    value: U256::ZERO,
                    data: Bytes::new(),
                    deployedCode: Bytes::new(),
                    depth: entry.depth,
                };
                last.push(resume_record);
            }
        }
    }
}

/// Dispatches the cheatcode call to the appropriate function.
fn apply_dispatch(
    calls: &Vm::VmCalls,
    ccx: &mut CheatsCtxt,
    executor: &mut dyn CheatcodesExecutor,
) -> Result {
    let cheat = calls_as_dyn_cheatcode(calls);

    let _guard = debug_span!(target: "cheatcodes", "apply", id = %cheat.id()).entered();
    trace!(target: "cheatcodes", cheat = ?cheat.as_debug(), "applying");

    if let spec::Status::Deprecated(replacement) = *cheat.status() {
        ccx.state.deprecated.insert(cheat.signature(), replacement);
    }

    // Apply the cheatcode.
    let mut result = cheat.dyn_apply(ccx, executor);

    // Format the error message to include the cheatcode name.
    if let Err(e) = &mut result {
        if e.is_str() {
            let name = cheat.name();
            // Skip showing the cheatcode name for:
            // - assertions: too verbose, and can already be inferred from the error message
            // - `rpcUrl`: forge-std relies on it in `getChainWithUpdatedRpcUrl`
            if !name.contains("assert") && name != "rpcUrl" {
                *e = fmt_err!("vm.{name}: {e}");
            }
        }
    }

    trace!(
        target: "cheatcodes",
        return = %match &result {
            Ok(b) => hex::encode(b),
            Err(e) => e.to_string(),
        }
    );

    result
}

fn calls_as_dyn_cheatcode(calls: &Vm::VmCalls) -> &dyn DynCheatcode {
    macro_rules! as_dyn {
        ($($variant:ident),*) => {
            match calls {
                $(Vm::VmCalls::$variant(cheat) => cheat,)*
            }
        };
    }
    vm_calls!(as_dyn)
}

/// Helper function to check if frame execution will exit.
fn will_exit(ir: InstructionResult) -> bool {
    !matches!(ir, InstructionResult::Continue | InstructionResult::CallOrCreate)
}