foundry_cheatcodes/inspector.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251
//! Cheatcode EVM inspector.
use crate::{
evm::{
mapping::{self, MappingSlots},
mock::{MockCallDataContext, MockCallReturnData},
prank::Prank,
DealRecord, GasRecord, RecordAccess,
},
inspector::utils::CommonCreateInput,
script::{Broadcast, Wallets},
test::{
assume::AssumeNoRevert,
expect::{
self, ExpectedCallData, ExpectedCallTracker, ExpectedCallType, ExpectedEmitTracker,
ExpectedRevert, ExpectedRevertKind,
},
},
utils::IgnoredTraces,
CheatsConfig, CheatsCtxt, DynCheatcode, Error, Result,
Vm::{self, AccountAccess},
};
use alloy_primitives::{
hex,
map::{AddressHashMap, HashMap},
Address, Bytes, Log, TxKind, B256, U256,
};
use alloy_rpc_types::request::{TransactionInput, TransactionRequest};
use alloy_sol_types::{SolCall, SolInterface, SolValue};
use foundry_common::{evm::Breakpoints, TransactionMaybeSigned, SELECTOR_LEN};
use foundry_evm_core::{
abi::Vm::stopExpectSafeMemoryCall,
backend::{DatabaseError, DatabaseExt, RevertDiagnostic},
constants::{CHEATCODE_ADDRESS, HARDHAT_CONSOLE_ADDRESS, MAGIC_ASSUME},
utils::new_evm_with_existing_context,
InspectorExt,
};
use foundry_evm_traces::{TracingInspector, TracingInspectorConfig};
use foundry_wallets::multi_wallet::MultiWallet;
use itertools::Itertools;
use proptest::test_runner::{RngAlgorithm, TestRng, TestRunner};
use rand::Rng;
use revm::{
interpreter::{
opcode as op, CallInputs, CallOutcome, CallScheme, CallValue, CreateInputs, CreateOutcome,
EOFCreateInputs, EOFCreateKind, Gas, InstructionResult, Interpreter, InterpreterAction,
InterpreterResult,
},
primitives::{
BlockEnv, CreateScheme, EVMError, EvmStorageSlot, SignedAuthorization, SpecId,
EOF_MAGIC_BYTES,
},
EvmContext, InnerEvmContext, Inspector,
};
use serde_json::Value;
use std::{
collections::{BTreeMap, VecDeque},
fs::File,
io::BufReader,
ops::Range,
path::PathBuf,
sync::Arc,
};
mod utils;
pub type Ecx<'a, 'b, 'c> = &'a mut EvmContext<&'b mut (dyn DatabaseExt + 'c)>;
pub type InnerEcx<'a, 'b, 'c> = &'a mut InnerEvmContext<&'b mut (dyn DatabaseExt + 'c)>;
/// Helper trait for obtaining complete [revm::Inspector] instance from mutable reference to
/// [Cheatcodes].
///
/// This is needed for cases when inspector itself needs mutable access to [Cheatcodes] state and
/// allows us to correctly execute arbitrary EVM frames from inside cheatcode implementations.
pub trait CheatcodesExecutor {
/// Core trait method accepting mutable reference to [Cheatcodes] and returning
/// [revm::Inspector].
fn get_inspector<'a>(&'a mut self, cheats: &'a mut Cheatcodes) -> Box<dyn InspectorExt + 'a>;
/// Obtains [revm::Evm] instance and executes the given CREATE frame.
fn exec_create(
&mut self,
inputs: CreateInputs,
ccx: &mut CheatsCtxt,
) -> Result<CreateOutcome, EVMError<DatabaseError>> {
with_evm(self, ccx, |evm| {
evm.context.evm.inner.journaled_state.depth += 1;
// Handle EOF bytecode
let first_frame_or_result = if evm.handler.cfg.spec_id.is_enabled_in(SpecId::OSAKA) &&
inputs.scheme == CreateScheme::Create &&
inputs.init_code.starts_with(&EOF_MAGIC_BYTES)
{
evm.handler.execution().eofcreate(
&mut evm.context,
Box::new(EOFCreateInputs::new(
inputs.caller,
inputs.value,
inputs.gas_limit,
EOFCreateKind::Tx { initdata: inputs.init_code },
)),
)?
} else {
evm.handler.execution().create(&mut evm.context, Box::new(inputs))?
};
let mut result = match first_frame_or_result {
revm::FrameOrResult::Frame(first_frame) => evm.run_the_loop(first_frame)?,
revm::FrameOrResult::Result(result) => result,
};
evm.handler.execution().last_frame_return(&mut evm.context, &mut result)?;
let outcome = match result {
revm::FrameResult::Call(_) => unreachable!(),
revm::FrameResult::Create(create) | revm::FrameResult::EOFCreate(create) => create,
};
evm.context.evm.inner.journaled_state.depth -= 1;
Ok(outcome)
})
}
fn console_log(&mut self, ccx: &mut CheatsCtxt, message: String) {
self.get_inspector(ccx.state).console_log(message);
}
/// Returns a mutable reference to the tracing inspector if it is available.
fn tracing_inspector(&mut self) -> Option<&mut Option<TracingInspector>> {
None
}
}
/// Constructs [revm::Evm] and runs a given closure with it.
fn with_evm<E, F, O>(
executor: &mut E,
ccx: &mut CheatsCtxt,
f: F,
) -> Result<O, EVMError<DatabaseError>>
where
E: CheatcodesExecutor + ?Sized,
F: for<'a, 'b> FnOnce(
&mut revm::Evm<'_, &'b mut dyn InspectorExt, &'a mut dyn DatabaseExt>,
) -> Result<O, EVMError<DatabaseError>>,
{
let mut inspector = executor.get_inspector(ccx.state);
let error = std::mem::replace(&mut ccx.ecx.error, Ok(()));
let l1_block_info = std::mem::take(&mut ccx.ecx.l1_block_info);
let inner = revm::InnerEvmContext {
env: ccx.ecx.env.clone(),
journaled_state: std::mem::replace(
&mut ccx.ecx.journaled_state,
revm::JournaledState::new(Default::default(), Default::default()),
),
db: &mut ccx.ecx.db as &mut dyn DatabaseExt,
error,
l1_block_info,
};
let mut evm = new_evm_with_existing_context(inner, &mut *inspector);
let res = f(&mut evm)?;
ccx.ecx.journaled_state = evm.context.evm.inner.journaled_state;
ccx.ecx.env = evm.context.evm.inner.env;
ccx.ecx.l1_block_info = evm.context.evm.inner.l1_block_info;
ccx.ecx.error = evm.context.evm.inner.error;
Ok(res)
}
/// Basic implementation of [CheatcodesExecutor] that simply returns the [Cheatcodes] instance as an
/// inspector.
#[derive(Debug, Default, Clone, Copy)]
struct TransparentCheatcodesExecutor;
impl CheatcodesExecutor for TransparentCheatcodesExecutor {
fn get_inspector<'a>(&'a mut self, cheats: &'a mut Cheatcodes) -> Box<dyn InspectorExt + 'a> {
Box::new(cheats)
}
}
macro_rules! try_or_return {
($e:expr) => {
match $e {
Ok(v) => v,
Err(_) => return,
}
};
}
/// Contains additional, test specific resources that should be kept for the duration of the test
#[derive(Debug, Default)]
pub struct Context {
/// Buffered readers for files opened for reading (path => BufReader mapping)
pub opened_read_files: HashMap<PathBuf, BufReader<File>>,
}
/// Every time we clone `Context`, we want it to be empty
impl Clone for Context {
fn clone(&self) -> Self {
Default::default()
}
}
impl Context {
/// Clears the context.
#[inline]
pub fn clear(&mut self) {
self.opened_read_files.clear();
}
}
/// Helps collecting transactions from different forks.
#[derive(Clone, Debug)]
pub struct BroadcastableTransaction {
/// The optional RPC URL.
pub rpc: Option<String>,
/// The transaction to broadcast.
pub transaction: TransactionMaybeSigned,
}
#[derive(Clone, Debug, Copy)]
pub struct RecordDebugStepInfo {
/// The debug trace node index when the recording starts.
pub start_node_idx: usize,
/// The original tracer config when the recording starts.
pub original_tracer_config: TracingInspectorConfig,
}
/// Holds gas metering state.
#[derive(Clone, Debug, Default)]
pub struct GasMetering {
/// True if gas metering is paused.
pub paused: bool,
/// True if gas metering was resumed or reset during the test.
/// Used to reconcile gas when frame ends (if spent less than refunded).
pub touched: bool,
/// True if gas metering should be reset to frame limit.
pub reset: bool,
/// Stores paused gas frames.
pub paused_frames: Vec<Gas>,
/// The group and name of the active snapshot.
pub active_gas_snapshot: Option<(String, String)>,
/// Cache of the amount of gas used in previous call.
/// This is used by the `lastCallGas` cheatcode.
pub last_call_gas: Option<crate::Vm::Gas>,
/// True if gas recording is enabled.
pub recording: bool,
/// The gas used in the last frame.
pub last_gas_used: u64,
/// Gas records for the active snapshots.
pub gas_records: Vec<GasRecord>,
}
impl GasMetering {
/// Start the gas recording.
pub fn start(&mut self) {
self.recording = true;
}
/// Stop the gas recording.
pub fn stop(&mut self) {
self.recording = false;
}
/// Resume paused gas metering.
pub fn resume(&mut self) {
if self.paused {
self.paused = false;
self.touched = true;
}
self.paused_frames.clear();
}
/// Reset gas to limit.
pub fn reset(&mut self) {
self.paused = false;
self.touched = true;
self.reset = true;
self.paused_frames.clear();
}
}
/// Holds data about arbitrary storage.
#[derive(Clone, Debug, Default)]
pub struct ArbitraryStorage {
/// Mapping of arbitrary storage addresses to generated values (slot, arbitrary value).
/// (SLOADs return random value if storage slot wasn't accessed).
/// Changed values are recorded and used to copy storage to different addresses.
pub values: HashMap<Address, HashMap<U256, U256>>,
/// Mapping of address with storage copied to arbitrary storage address source.
pub copies: HashMap<Address, Address>,
}
impl ArbitraryStorage {
/// Marks an address with arbitrary storage.
pub fn mark_arbitrary(&mut self, address: &Address) {
self.values.insert(*address, HashMap::default());
}
/// Maps an address that copies storage with the arbitrary storage address.
pub fn mark_copy(&mut self, from: &Address, to: &Address) {
if self.values.contains_key(from) {
self.copies.insert(*to, *from);
}
}
/// Saves arbitrary storage value for a given address:
/// - store value in changed values cache.
/// - update account's storage with given value.
pub fn save(&mut self, ecx: InnerEcx, address: Address, slot: U256, data: U256) {
self.values.get_mut(&address).expect("missing arbitrary address entry").insert(slot, data);
if let Ok(mut account) = ecx.load_account(address) {
account.storage.insert(slot, EvmStorageSlot::new(data));
}
}
/// Copies arbitrary storage value from source address to the given target address:
/// - if a value is present in arbitrary values cache, then update target storage and return
/// existing value.
/// - if no value was yet generated for given slot, then save new value in cache and update both
/// source and target storages.
pub fn copy(&mut self, ecx: InnerEcx, target: Address, slot: U256, new_value: U256) -> U256 {
let source = self.copies.get(&target).expect("missing arbitrary copy target entry");
let storage_cache = self.values.get_mut(source).expect("missing arbitrary source storage");
let value = match storage_cache.get(&slot) {
Some(value) => *value,
None => {
storage_cache.insert(slot, new_value);
// Update source storage with new value.
if let Ok(mut source_account) = ecx.load_account(*source) {
source_account.storage.insert(slot, EvmStorageSlot::new(new_value));
}
new_value
}
};
// Update target storage with new value.
if let Ok(mut target_account) = ecx.load_account(target) {
target_account.storage.insert(slot, EvmStorageSlot::new(value));
}
value
}
}
/// List of transactions that can be broadcasted.
pub type BroadcastableTransactions = VecDeque<BroadcastableTransaction>;
/// An EVM inspector that handles calls to various cheatcodes, each with their own behavior.
///
/// Cheatcodes can be called by contracts during execution to modify the VM environment, such as
/// mocking addresses, signatures and altering call reverts.
///
/// Executing cheatcodes can be very powerful. Most cheatcodes are limited to evm internals, but
/// there are also cheatcodes like `ffi` which can execute arbitrary commands or `writeFile` and
/// `readFile` which can manipulate files of the filesystem. Therefore, several restrictions are
/// implemented for these cheatcodes:
/// - `ffi`, and file cheatcodes are _always_ opt-in (via foundry config) and never enabled by
/// default: all respective cheatcode handlers implement the appropriate checks
/// - File cheatcodes require explicit permissions which paths are allowed for which operation, see
/// `Config.fs_permission`
/// - Only permitted accounts are allowed to execute cheatcodes in forking mode, this ensures no
/// contract deployed on the live network is able to execute cheatcodes by simply calling the
/// cheatcode address: by default, the caller, test contract and newly deployed contracts are
/// allowed to execute cheatcodes
#[derive(Clone, Debug)]
pub struct Cheatcodes {
/// The block environment
///
/// Used in the cheatcode handler to overwrite the block environment separately from the
/// execution block environment.
pub block: Option<BlockEnv>,
/// Currently active EIP-7702 delegation that will be consumed when building the next
/// transaction. Set by `vm.attachDelegation()` and consumed via `.take()` during
/// transaction construction.
pub active_delegation: Option<SignedAuthorization>,
/// The gas price.
///
/// Used in the cheatcode handler to overwrite the gas price separately from the gas price
/// in the execution environment.
pub gas_price: Option<U256>,
/// Address labels
pub labels: AddressHashMap<String>,
/// Prank information
pub prank: Option<Prank>,
/// Expected revert information
pub expected_revert: Option<ExpectedRevert>,
/// Assume next call can revert and discard fuzz run if it does.
pub assume_no_revert: Option<AssumeNoRevert>,
/// Additional diagnostic for reverts
pub fork_revert_diagnostic: Option<RevertDiagnostic>,
/// Recorded storage reads and writes
pub accesses: Option<RecordAccess>,
/// Recorded account accesses (calls, creates) organized by relative call depth, where the
/// topmost vector corresponds to accesses at the depth at which account access recording
/// began. Each vector in the matrix represents a list of accesses at a specific call
/// depth. Once that call context has ended, the last vector is removed from the matrix and
/// merged into the previous vector.
pub recorded_account_diffs_stack: Option<Vec<Vec<AccountAccess>>>,
/// The information of the debug step recording.
pub record_debug_steps_info: Option<RecordDebugStepInfo>,
/// Recorded logs
pub recorded_logs: Option<Vec<crate::Vm::Log>>,
/// Mocked calls
// **Note**: inner must a BTreeMap because of special `Ord` impl for `MockCallDataContext`
pub mocked_calls: HashMap<Address, BTreeMap<MockCallDataContext, VecDeque<MockCallReturnData>>>,
/// Mocked functions. Maps target address to be mocked to pair of (calldata, mock address).
pub mocked_functions: HashMap<Address, HashMap<Bytes, Address>>,
/// Expected calls
pub expected_calls: ExpectedCallTracker,
/// Expected emits
pub expected_emits: ExpectedEmitTracker,
/// Map of context depths to memory offset ranges that may be written to within the call depth.
pub allowed_mem_writes: HashMap<u64, Vec<Range<u64>>>,
/// Current broadcasting information
pub broadcast: Option<Broadcast>,
/// Scripting based transactions
pub broadcastable_transactions: BroadcastableTransactions,
/// Additional, user configurable context this Inspector has access to when inspecting a call.
pub config: Arc<CheatsConfig>,
/// Test-scoped context holding data that needs to be reset every test run
pub context: Context,
/// Whether to commit FS changes such as file creations, writes and deletes.
/// Used to prevent duplicate changes file executing non-committing calls.
pub fs_commit: bool,
/// Serialized JSON values.
// **Note**: both must a BTreeMap to ensure the order of the keys is deterministic.
pub serialized_jsons: BTreeMap<String, BTreeMap<String, Value>>,
/// All recorded ETH `deal`s.
pub eth_deals: Vec<DealRecord>,
/// Gas metering state.
pub gas_metering: GasMetering,
/// Contains gas snapshots made over the course of a test suite.
// **Note**: both must a BTreeMap to ensure the order of the keys is deterministic.
pub gas_snapshots: BTreeMap<String, BTreeMap<String, String>>,
/// Mapping slots.
pub mapping_slots: Option<AddressHashMap<MappingSlots>>,
/// The current program counter.
pub pc: usize,
/// Breakpoints supplied by the `breakpoint` cheatcode.
/// `char -> (address, pc)`
pub breakpoints: Breakpoints,
/// Optional cheatcodes `TestRunner`. Used for generating random values from uint and int
/// strategies.
test_runner: Option<TestRunner>,
/// Ignored traces.
pub ignored_traces: IgnoredTraces,
/// Addresses with arbitrary storage.
pub arbitrary_storage: Option<ArbitraryStorage>,
/// Deprecated cheatcodes mapped to the reason. Used to report warnings on test results.
pub deprecated: HashMap<&'static str, Option<&'static str>>,
/// Unlocked wallets used in scripts and testing of scripts.
pub wallets: Option<Wallets>,
}
// This is not derived because calling this in `fn new` with `..Default::default()` creates a second
// `CheatsConfig` which is unused, and inside it `ProjectPathsConfig` is relatively expensive to
// create.
impl Default for Cheatcodes {
fn default() -> Self {
Self::new(Arc::default())
}
}
impl Cheatcodes {
/// Creates a new `Cheatcodes` with the given settings.
pub fn new(config: Arc<CheatsConfig>) -> Self {
Self {
fs_commit: true,
labels: config.labels.clone(),
config,
block: Default::default(),
active_delegation: Default::default(),
gas_price: Default::default(),
prank: Default::default(),
expected_revert: Default::default(),
assume_no_revert: Default::default(),
fork_revert_diagnostic: Default::default(),
accesses: Default::default(),
recorded_account_diffs_stack: Default::default(),
recorded_logs: Default::default(),
record_debug_steps_info: Default::default(),
mocked_calls: Default::default(),
mocked_functions: Default::default(),
expected_calls: Default::default(),
expected_emits: Default::default(),
allowed_mem_writes: Default::default(),
broadcast: Default::default(),
broadcastable_transactions: Default::default(),
context: Default::default(),
serialized_jsons: Default::default(),
eth_deals: Default::default(),
gas_metering: Default::default(),
gas_snapshots: Default::default(),
mapping_slots: Default::default(),
pc: Default::default(),
breakpoints: Default::default(),
test_runner: Default::default(),
ignored_traces: Default::default(),
arbitrary_storage: Default::default(),
deprecated: Default::default(),
wallets: Default::default(),
}
}
/// Returns the configured wallets if available, else creates a new instance.
pub fn wallets(&mut self) -> &Wallets {
self.wallets.get_or_insert_with(|| Wallets::new(MultiWallet::default(), None))
}
/// Sets the unlocked wallets.
pub fn set_wallets(&mut self, wallets: Wallets) {
self.wallets = Some(wallets);
}
/// Decodes the input data and applies the cheatcode.
fn apply_cheatcode(
&mut self,
ecx: Ecx,
call: &CallInputs,
executor: &mut dyn CheatcodesExecutor,
) -> Result {
// decode the cheatcode call
let decoded = Vm::VmCalls::abi_decode(&call.input, false).map_err(|e| {
if let alloy_sol_types::Error::UnknownSelector { name: _, selector } = e {
let msg = format!(
"unknown cheatcode with selector {selector}; \
you may have a mismatch between the `Vm` interface (likely in `forge-std`) \
and the `forge` version"
);
return alloy_sol_types::Error::Other(std::borrow::Cow::Owned(msg));
}
e
})?;
let caller = call.caller;
// ensure the caller is allowed to execute cheatcodes,
// but only if the backend is in forking mode
ecx.db.ensure_cheatcode_access_forking_mode(&caller)?;
apply_dispatch(
&decoded,
&mut CheatsCtxt {
state: self,
ecx: &mut ecx.inner,
precompiles: &mut ecx.precompiles,
gas_limit: call.gas_limit,
caller,
},
executor,
)
}
/// Grants cheat code access for new contracts if the caller also has
/// cheatcode access or the new contract is created in top most call.
///
/// There may be cheatcodes in the constructor of the new contract, in order to allow them
/// automatically we need to determine the new address.
fn allow_cheatcodes_on_create(&self, ecx: InnerEcx, caller: Address, created_address: Address) {
if ecx.journaled_state.depth <= 1 || ecx.db.has_cheatcode_access(&caller) {
ecx.db.allow_cheatcode_access(created_address);
}
}
/// Called when there was a revert.
///
/// Cleanup any previously applied cheatcodes that altered the state in such a way that revm's
/// revert would run into issues.
pub fn on_revert(&mut self, ecx: Ecx) {
trace!(deals=?self.eth_deals.len(), "rolling back deals");
// Delay revert clean up until expected revert is handled, if set.
if self.expected_revert.is_some() {
return;
}
// we only want to apply cleanup top level
if ecx.journaled_state.depth() > 0 {
return;
}
// Roll back all previously applied deals
// This will prevent overflow issues in revm's [`JournaledState::journal_revert`] routine
// which rolls back any transfers.
while let Some(record) = self.eth_deals.pop() {
if let Some(acc) = ecx.journaled_state.state.get_mut(&record.address) {
acc.info.balance = record.old_balance;
}
}
}
// common create functionality for both legacy and EOF.
fn create_common<Input>(&mut self, ecx: Ecx, mut input: Input) -> Option<CreateOutcome>
where
Input: CommonCreateInput,
{
let ecx = &mut ecx.inner;
let gas = Gas::new(input.gas_limit());
// Apply our prank
if let Some(prank) = &self.prank {
if ecx.journaled_state.depth() >= prank.depth && input.caller() == prank.prank_caller {
// At the target depth we set `msg.sender`
if ecx.journaled_state.depth() == prank.depth {
input.set_caller(prank.new_caller);
}
// At the target depth, or deeper, we set `tx.origin`
if let Some(new_origin) = prank.new_origin {
ecx.env.tx.caller = new_origin;
}
}
}
// Apply our broadcast
if let Some(broadcast) = &self.broadcast {
if ecx.journaled_state.depth() >= broadcast.depth &&
input.caller() == broadcast.original_caller
{
if let Err(err) =
ecx.journaled_state.load_account(broadcast.new_origin, &mut ecx.db)
{
return Some(CreateOutcome {
result: InterpreterResult {
result: InstructionResult::Revert,
output: Error::encode(err),
gas,
},
address: None,
});
}
ecx.env.tx.caller = broadcast.new_origin;
if ecx.journaled_state.depth() == broadcast.depth {
input.set_caller(broadcast.new_origin);
let is_fixed_gas_limit = check_if_fixed_gas_limit(ecx, input.gas_limit());
let account = &ecx.journaled_state.state()[&broadcast.new_origin];
self.broadcastable_transactions.push_back(BroadcastableTransaction {
rpc: ecx.db.active_fork_url(),
transaction: TransactionRequest {
from: Some(broadcast.new_origin),
to: None,
value: Some(input.value()),
input: TransactionInput::new(input.init_code()),
nonce: Some(account.info.nonce),
gas: if is_fixed_gas_limit { Some(input.gas_limit()) } else { None },
..Default::default()
}
.into(),
});
input.log_debug(self, &input.scheme().unwrap_or(CreateScheme::Create));
}
}
}
// Allow cheatcodes from the address of the new contract
let address = input.allow_cheatcodes(self, ecx);
// If `recordAccountAccesses` has been called, record the create
if let Some(recorded_account_diffs_stack) = &mut self.recorded_account_diffs_stack {
recorded_account_diffs_stack.push(vec![AccountAccess {
chainInfo: crate::Vm::ChainInfo {
forkId: ecx.db.active_fork_id().unwrap_or_default(),
chainId: U256::from(ecx.env.cfg.chain_id),
},
accessor: input.caller(),
account: address,
kind: crate::Vm::AccountAccessKind::Create,
initialized: true,
oldBalance: U256::ZERO, // updated on (eof)create_end
newBalance: U256::ZERO, // updated on (eof)create_end
value: input.value(),
data: input.init_code(),
reverted: false,
deployedCode: Bytes::new(), // updated on (eof)create_end
storageAccesses: vec![], // updated on (eof)create_end
depth: ecx.journaled_state.depth(),
}]);
}
None
}
// common create_end functionality for both legacy and EOF.
fn create_end_common(&mut self, ecx: Ecx, mut outcome: CreateOutcome) -> CreateOutcome
where {
let ecx = &mut ecx.inner;
// Clean up pranks
if let Some(prank) = &self.prank {
if ecx.journaled_state.depth() == prank.depth {
ecx.env.tx.caller = prank.prank_origin;
// Clean single-call prank once we have returned to the original depth
if prank.single_call {
std::mem::take(&mut self.prank);
}
}
}
// Clean up broadcasts
if let Some(broadcast) = &self.broadcast {
if ecx.journaled_state.depth() == broadcast.depth {
ecx.env.tx.caller = broadcast.original_origin;
// Clean single-call broadcast once we have returned to the original depth
if broadcast.single_call {
std::mem::take(&mut self.broadcast);
}
}
}
// Handle expected reverts
if let Some(expected_revert) = &self.expected_revert {
if ecx.journaled_state.depth() <= expected_revert.depth &&
matches!(expected_revert.kind, ExpectedRevertKind::Default)
{
let mut expected_revert = std::mem::take(&mut self.expected_revert).unwrap();
let handler_result = expect::handle_expect_revert(
false,
true,
&mut expected_revert,
outcome.result.result,
outcome.result.output.clone(),
&self.config.available_artifacts,
);
return match handler_result {
Ok((address, retdata)) => {
expected_revert.actual_count += 1;
if expected_revert.actual_count < expected_revert.count {
self.expected_revert = Some(expected_revert.clone());
}
outcome.result.result = InstructionResult::Return;
outcome.result.output = retdata;
outcome.address = address;
outcome
}
Err(err) => {
outcome.result.result = InstructionResult::Revert;
outcome.result.output = err.abi_encode().into();
outcome
}
};
}
}
// If `startStateDiffRecording` has been called, update the `reverted` status of the
// previous call depth's recorded accesses, if any
if let Some(recorded_account_diffs_stack) = &mut self.recorded_account_diffs_stack {
// The root call cannot be recorded.
if ecx.journaled_state.depth() > 0 {
let mut last_depth =
recorded_account_diffs_stack.pop().expect("missing CREATE account accesses");
// Update the reverted status of all deeper calls if this call reverted, in
// accordance with EVM behavior
if outcome.result.is_revert() {
last_depth.iter_mut().for_each(|element| {
element.reverted = true;
element
.storageAccesses
.iter_mut()
.for_each(|storage_access| storage_access.reverted = true);
})
}
let create_access = last_depth.first_mut().expect("empty AccountAccesses");
// Assert that we're at the correct depth before recording post-create state
// changes. Depending on what depth the cheat was called at, there
// may not be any pending calls to update if execution has
// percolated up to a higher depth.
if create_access.depth == ecx.journaled_state.depth() {
debug_assert_eq!(
create_access.kind as u8,
crate::Vm::AccountAccessKind::Create as u8
);
if let Some(address) = outcome.address {
if let Ok(created_acc) =
ecx.journaled_state.load_account(address, &mut ecx.db)
{
create_access.newBalance = created_acc.info.balance;
create_access.deployedCode =
created_acc.info.code.clone().unwrap_or_default().original_bytes();
}
}
}
// Merge the last depth's AccountAccesses into the AccountAccesses at the current
// depth, or push them back onto the pending vector if higher depths were not
// recorded. This preserves ordering of accesses.
if let Some(last) = recorded_account_diffs_stack.last_mut() {
last.append(&mut last_depth);
} else {
recorded_account_diffs_stack.push(last_depth);
}
}
}
outcome
}
pub fn call_with_executor(
&mut self,
ecx: Ecx,
call: &mut CallInputs,
executor: &mut impl CheatcodesExecutor,
) -> Option<CallOutcome> {
let gas = Gas::new(call.gas_limit);
// At the root call to test function or script `run()`/`setUp()` functions, we are
// decreasing sender nonce to ensure that it matches on-chain nonce once we start
// broadcasting.
if ecx.journaled_state.depth == 0 {
let sender = ecx.env.tx.caller;
let account = match super::evm::journaled_account(ecx, sender) {
Ok(account) => account,
Err(err) => {
return Some(CallOutcome {
result: InterpreterResult {
result: InstructionResult::Revert,
output: err.abi_encode().into(),
gas,
},
memory_offset: call.return_memory_offset.clone(),
})
}
};
let prev = account.info.nonce;
account.info.nonce = prev.saturating_sub(1);
trace!(target: "cheatcodes", %sender, nonce=account.info.nonce, prev, "corrected nonce");
}
if call.target_address == CHEATCODE_ADDRESS {
return match self.apply_cheatcode(ecx, call, executor) {
Ok(retdata) => Some(CallOutcome {
result: InterpreterResult {
result: InstructionResult::Return,
output: retdata.into(),
gas,
},
memory_offset: call.return_memory_offset.clone(),
}),
Err(err) => Some(CallOutcome {
result: InterpreterResult {
result: InstructionResult::Revert,
output: err.abi_encode().into(),
gas,
},
memory_offset: call.return_memory_offset.clone(),
}),
};
}
let ecx = &mut ecx.inner;
if call.target_address == HARDHAT_CONSOLE_ADDRESS {
return None;
}
// Handle expected calls
// Grab the different calldatas expected.
if let Some(expected_calls_for_target) = self.expected_calls.get_mut(&call.bytecode_address)
{
// Match every partial/full calldata
for (calldata, (expected, actual_count)) in expected_calls_for_target {
// Increment actual times seen if...
// The calldata is at most, as big as this call's input, and
if calldata.len() <= call.input.len() &&
// Both calldata match, taking the length of the assumed smaller one (which will have at least the selector), and
*calldata == call.input[..calldata.len()] &&
// The value matches, if provided
expected
.value.is_none_or(|value| Some(value) == call.transfer_value()) &&
// The gas matches, if provided
expected.gas.is_none_or(|gas| gas == call.gas_limit) &&
// The minimum gas matches, if provided
expected.min_gas.is_none_or(|min_gas| min_gas <= call.gas_limit)
{
*actual_count += 1;
}
}
}
// Handle mocked calls
if let Some(mocks) = self.mocked_calls.get_mut(&call.bytecode_address) {
let ctx =
MockCallDataContext { calldata: call.input.clone(), value: call.transfer_value() };
if let Some(return_data_queue) = match mocks.get_mut(&ctx) {
Some(queue) => Some(queue),
None => mocks
.iter_mut()
.find(|(mock, _)| {
call.input.get(..mock.calldata.len()) == Some(&mock.calldata[..]) &&
mock.value.is_none_or(|value| Some(value) == call.transfer_value())
})
.map(|(_, v)| v),
} {
if let Some(return_data) = if return_data_queue.len() == 1 {
// If the mocked calls stack has a single element in it, don't empty it
return_data_queue.front().map(|x| x.to_owned())
} else {
// Else, we pop the front element
return_data_queue.pop_front()
} {
return Some(CallOutcome {
result: InterpreterResult {
result: return_data.ret_type,
output: return_data.data,
gas,
},
memory_offset: call.return_memory_offset.clone(),
});
}
}
}
// Apply our prank
if let Some(prank) = &self.prank {
// Apply delegate call, `call.caller`` will not equal `prank.prank_caller`
if let CallScheme::DelegateCall | CallScheme::ExtDelegateCall = call.scheme {
if prank.delegate_call {
call.target_address = prank.new_caller;
call.caller = prank.new_caller;
let acc = ecx.journaled_state.account(prank.new_caller);
call.value = CallValue::Apparent(acc.info.balance);
if let Some(new_origin) = prank.new_origin {
ecx.env.tx.caller = new_origin;
}
}
}
if ecx.journaled_state.depth() >= prank.depth && call.caller == prank.prank_caller {
let mut prank_applied = false;
// At the target depth we set `msg.sender`
if ecx.journaled_state.depth() == prank.depth {
call.caller = prank.new_caller;
prank_applied = true;
}
// At the target depth, or deeper, we set `tx.origin`
if let Some(new_origin) = prank.new_origin {
ecx.env.tx.caller = new_origin;
prank_applied = true;
}
// If prank applied for first time, then update
if prank_applied {
if let Some(applied_prank) = prank.first_time_applied() {
self.prank = Some(applied_prank);
}
}
}
}
// Apply our broadcast
if let Some(broadcast) = &self.broadcast {
// We only apply a broadcast *to a specific depth*.
//
// We do this because any subsequent contract calls *must* exist on chain and
// we only want to grab *this* call, not internal ones
if ecx.journaled_state.depth() == broadcast.depth &&
call.caller == broadcast.original_caller
{
// At the target depth we set `msg.sender` & tx.origin.
// We are simulating the caller as being an EOA, so *both* must be set to the
// broadcast.origin.
ecx.env.tx.caller = broadcast.new_origin;
call.caller = broadcast.new_origin;
// Add a `legacy` transaction to the VecDeque. We use a legacy transaction here
// because we only need the from, to, value, and data. We can later change this
// into 1559, in the cli package, relatively easily once we
// know the target chain supports EIP-1559.
if !call.is_static {
if let Err(err) = ecx.load_account(broadcast.new_origin) {
return Some(CallOutcome {
result: InterpreterResult {
result: InstructionResult::Revert,
output: Error::encode(err),
gas,
},
memory_offset: call.return_memory_offset.clone(),
});
}
let is_fixed_gas_limit = check_if_fixed_gas_limit(ecx, call.gas_limit);
let account =
ecx.journaled_state.state().get_mut(&broadcast.new_origin).unwrap();
let mut tx_req = TransactionRequest {
from: Some(broadcast.new_origin),
to: Some(TxKind::from(Some(call.target_address))),
value: call.transfer_value(),
input: TransactionInput::new(call.input.clone()),
nonce: Some(account.info.nonce),
chain_id: Some(ecx.env.cfg.chain_id),
gas: if is_fixed_gas_limit { Some(call.gas_limit) } else { None },
..Default::default()
};
if let Some(auth_list) = self.active_delegation.take() {
tx_req.authorization_list = Some(vec![auth_list]);
} else {
tx_req.authorization_list = None;
}
self.broadcastable_transactions.push_back(BroadcastableTransaction {
rpc: ecx.db.active_fork_url(),
transaction: tx_req.into(),
});
debug!(target: "cheatcodes", tx=?self.broadcastable_transactions.back().unwrap(), "broadcastable call");
// Explicitly increment nonce if calls are not isolated.
if !self.config.evm_opts.isolate {
let prev = account.info.nonce;
account.info.nonce += 1;
debug!(target: "cheatcodes", address=%broadcast.new_origin, nonce=prev+1, prev, "incremented nonce");
}
} else if broadcast.single_call {
let msg =
"`staticcall`s are not allowed after `broadcast`; use `startBroadcast` instead";
return Some(CallOutcome {
result: InterpreterResult {
result: InstructionResult::Revert,
output: Error::encode(msg),
gas,
},
memory_offset: call.return_memory_offset.clone(),
});
}
}
}
// Record called accounts if `startStateDiffRecording` has been called
if let Some(recorded_account_diffs_stack) = &mut self.recorded_account_diffs_stack {
// Determine if account is "initialized," ie, it has a non-zero balance, a non-zero
// nonce, a non-zero KECCAK_EMPTY codehash, or non-empty code
let initialized;
let old_balance;
if let Ok(acc) = ecx.load_account(call.target_address) {
initialized = acc.info.exists();
old_balance = acc.info.balance;
} else {
initialized = false;
old_balance = U256::ZERO;
}
let kind = match call.scheme {
CallScheme::Call => crate::Vm::AccountAccessKind::Call,
CallScheme::CallCode => crate::Vm::AccountAccessKind::CallCode,
CallScheme::DelegateCall => crate::Vm::AccountAccessKind::DelegateCall,
CallScheme::StaticCall => crate::Vm::AccountAccessKind::StaticCall,
CallScheme::ExtCall => crate::Vm::AccountAccessKind::Call,
CallScheme::ExtStaticCall => crate::Vm::AccountAccessKind::StaticCall,
CallScheme::ExtDelegateCall => crate::Vm::AccountAccessKind::DelegateCall,
};
// Record this call by pushing it to a new pending vector; all subsequent calls at
// that depth will be pushed to the same vector. When the call ends, the
// RecordedAccountAccess (and all subsequent RecordedAccountAccesses) will be
// updated with the revert status of this call, since the EVM does not mark accounts
// as "warm" if the call from which they were accessed is reverted
recorded_account_diffs_stack.push(vec![AccountAccess {
chainInfo: crate::Vm::ChainInfo {
forkId: ecx.db.active_fork_id().unwrap_or_default(),
chainId: U256::from(ecx.env.cfg.chain_id),
},
accessor: call.caller,
account: call.bytecode_address,
kind,
initialized,
oldBalance: old_balance,
newBalance: U256::ZERO, // updated on call_end
value: call.call_value(),
data: call.input.clone(),
reverted: false,
deployedCode: Bytes::new(),
storageAccesses: vec![], // updated on step
depth: ecx.journaled_state.depth(),
}]);
}
None
}
pub fn rng(&mut self) -> &mut impl Rng {
self.test_runner().rng()
}
pub fn test_runner(&mut self) -> &mut TestRunner {
self.test_runner.get_or_insert_with(|| match self.config.seed {
Some(seed) => TestRunner::new_with_rng(
proptest::test_runner::Config::default(),
TestRng::from_seed(RngAlgorithm::ChaCha, &seed.to_be_bytes::<32>()),
),
None => TestRunner::new(proptest::test_runner::Config::default()),
})
}
/// Returns existing or set a default `ArbitraryStorage` option.
/// Used by `setArbitraryStorage` cheatcode to track addresses with arbitrary storage.
pub fn arbitrary_storage(&mut self) -> &mut ArbitraryStorage {
self.arbitrary_storage.get_or_insert_with(ArbitraryStorage::default)
}
/// Whether the given address has arbitrary storage.
pub fn has_arbitrary_storage(&self, address: &Address) -> bool {
match &self.arbitrary_storage {
Some(storage) => storage.values.contains_key(address),
None => false,
}
}
/// Whether the given address is a copy of an address with arbitrary storage.
pub fn is_arbitrary_storage_copy(&self, address: &Address) -> bool {
match &self.arbitrary_storage {
Some(storage) => storage.copies.contains_key(address),
None => false,
}
}
}
impl Inspector<&mut dyn DatabaseExt> for Cheatcodes {
#[inline]
fn initialize_interp(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
// When the first interpreter is initialized we've circumvented the balance and gas checks,
// so we apply our actual block data with the correct fees and all.
if let Some(block) = self.block.take() {
ecx.env.block = block;
}
if let Some(gas_price) = self.gas_price.take() {
ecx.env.tx.gas_price = gas_price;
}
// Record gas for current frame.
if self.gas_metering.paused {
self.gas_metering.paused_frames.push(interpreter.gas);
}
}
#[inline]
fn step(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
self.pc = interpreter.program_counter();
// `pauseGasMetering`: pause / resume interpreter gas.
if self.gas_metering.paused {
self.meter_gas(interpreter);
}
// `resetGasMetering`: reset interpreter gas.
if self.gas_metering.reset {
self.meter_gas_reset(interpreter);
}
// `record`: record storage reads and writes.
if self.accesses.is_some() {
self.record_accesses(interpreter);
}
// `startStateDiffRecording`: record granular ordered storage accesses.
if self.recorded_account_diffs_stack.is_some() {
self.record_state_diffs(interpreter, ecx);
}
// `expectSafeMemory`: check if the current opcode is allowed to interact with memory.
if !self.allowed_mem_writes.is_empty() {
self.check_mem_opcodes(interpreter, ecx.journaled_state.depth());
}
// `startMappingRecording`: record SSTORE and KECCAK256.
if let Some(mapping_slots) = &mut self.mapping_slots {
mapping::step(mapping_slots, interpreter);
}
// `snapshotGas*`: take a snapshot of the current gas.
if self.gas_metering.recording {
self.meter_gas_record(interpreter, ecx);
}
}
#[inline]
fn step_end(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
if self.gas_metering.paused {
self.meter_gas_end(interpreter);
}
if self.gas_metering.touched {
self.meter_gas_check(interpreter);
}
// `setArbitraryStorage` and `copyStorage`: add arbitrary values to storage.
if self.arbitrary_storage.is_some() {
self.arbitrary_storage_end(interpreter, ecx);
}
}
fn log(&mut self, interpreter: &mut Interpreter, _ecx: Ecx, log: &Log) {
if !self.expected_emits.is_empty() {
expect::handle_expect_emit(self, log, interpreter);
}
// `recordLogs`
if let Some(storage_recorded_logs) = &mut self.recorded_logs {
storage_recorded_logs.push(Vm::Log {
topics: log.data.topics().to_vec(),
data: log.data.data.clone(),
emitter: log.address,
});
}
}
fn call(&mut self, ecx: Ecx, inputs: &mut CallInputs) -> Option<CallOutcome> {
Self::call_with_executor(self, ecx, inputs, &mut TransparentCheatcodesExecutor)
}
fn call_end(&mut self, ecx: Ecx, call: &CallInputs, mut outcome: CallOutcome) -> CallOutcome {
let ecx = &mut ecx.inner;
let cheatcode_call = call.target_address == CHEATCODE_ADDRESS ||
call.target_address == HARDHAT_CONSOLE_ADDRESS;
// Clean up pranks/broadcasts if it's not a cheatcode call end. We shouldn't do
// it for cheatcode calls because they are not applied for cheatcodes in the `call` hook.
// This should be placed before the revert handling, because we might exit early there
if !cheatcode_call {
// Clean up pranks
if let Some(prank) = &self.prank {
if ecx.journaled_state.depth() == prank.depth {
ecx.env.tx.caller = prank.prank_origin;
// Clean single-call prank once we have returned to the original depth
if prank.single_call {
let _ = self.prank.take();
}
}
}
// Clean up broadcast
if let Some(broadcast) = &self.broadcast {
if ecx.journaled_state.depth() == broadcast.depth {
ecx.env.tx.caller = broadcast.original_origin;
// Clean single-call broadcast once we have returned to the original depth
if broadcast.single_call {
let _ = self.broadcast.take();
}
}
}
}
// Handle assume not revert cheatcode.
if let Some(assume_no_revert) = &self.assume_no_revert {
if ecx.journaled_state.depth() == assume_no_revert.depth && !cheatcode_call {
// Discard run if we're at the same depth as cheatcode and call reverted.
if outcome.result.is_revert() {
outcome.result.output = Error::from(MAGIC_ASSUME).abi_encode().into();
return outcome;
}
// Call didn't revert, reset `assume_no_revert` state.
self.assume_no_revert = None;
}
}
// Handle expected reverts.
if let Some(expected_revert) = &mut self.expected_revert {
// Record current reverter address before processing the expect revert if call reverted,
// expect revert is set with expected reverter address and no actual reverter set yet.
if outcome.result.is_revert() &&
expected_revert.reverter.is_some() &&
expected_revert.reverted_by.is_none()
{
expected_revert.reverted_by = Some(call.target_address);
} else if outcome.result.is_revert() &&
expected_revert.reverter.is_some() &&
expected_revert.reverted_by.is_some() &&
expected_revert.count > 1
{
// If we're expecting more than one revert, we need to reset the reverted_by address
// to latest reverter.
expected_revert.reverted_by = Some(call.target_address);
}
if ecx.journaled_state.depth() <= expected_revert.depth {
let needs_processing = match expected_revert.kind {
ExpectedRevertKind::Default => !cheatcode_call,
// `pending_processing` == true means that we're in the `call_end` hook for
// `vm.expectCheatcodeRevert` and shouldn't expect revert here
ExpectedRevertKind::Cheatcode { pending_processing } => {
cheatcode_call && !pending_processing
}
};
if needs_processing {
// Only `remove` the expected revert from state if `expected_revert.count` ==
// `expected_revert.actual_count`
let mut expected_revert = std::mem::take(&mut self.expected_revert).unwrap();
let handler_result = expect::handle_expect_revert(
cheatcode_call,
false,
&mut expected_revert,
outcome.result.result,
outcome.result.output.clone(),
&self.config.available_artifacts,
);
return match handler_result {
Err(error) => {
trace!(expected=?expected_revert, ?error, status=?outcome.result.result, "Expected revert mismatch");
outcome.result.result = InstructionResult::Revert;
outcome.result.output = error.abi_encode().into();
outcome
}
Ok((_, retdata)) => {
expected_revert.actual_count += 1;
if expected_revert.actual_count < expected_revert.count {
self.expected_revert = Some(expected_revert.clone());
}
outcome.result.result = InstructionResult::Return;
outcome.result.output = retdata;
outcome
}
};
}
// Flip `pending_processing` flag for cheatcode revert expectations, marking that
// we've exited the `expectCheatcodeRevert` call scope
if let ExpectedRevertKind::Cheatcode { pending_processing } =
&mut self.expected_revert.as_mut().unwrap().kind
{
*pending_processing = false;
}
}
}
// Exit early for calls to cheatcodes as other logic is not relevant for cheatcode
// invocations
if cheatcode_call {
return outcome;
}
// Record the gas usage of the call, this allows the `lastCallGas` cheatcode to
// retrieve the gas usage of the last call.
let gas = outcome.result.gas;
self.gas_metering.last_call_gas = Some(crate::Vm::Gas {
gasLimit: gas.limit(),
gasTotalUsed: gas.spent(),
gasMemoryUsed: 0,
gasRefunded: gas.refunded(),
gasRemaining: gas.remaining(),
});
// If `startStateDiffRecording` has been called, update the `reverted` status of the
// previous call depth's recorded accesses, if any
if let Some(recorded_account_diffs_stack) = &mut self.recorded_account_diffs_stack {
// The root call cannot be recorded.
if ecx.journaled_state.depth() > 0 {
let mut last_recorded_depth =
recorded_account_diffs_stack.pop().expect("missing CALL account accesses");
// Update the reverted status of all deeper calls if this call reverted, in
// accordance with EVM behavior
if outcome.result.is_revert() {
last_recorded_depth.iter_mut().for_each(|element| {
element.reverted = true;
element
.storageAccesses
.iter_mut()
.for_each(|storage_access| storage_access.reverted = true);
})
}
let call_access = last_recorded_depth.first_mut().expect("empty AccountAccesses");
// Assert that we're at the correct depth before recording post-call state changes.
// Depending on the depth the cheat was called at, there may not be any pending
// calls to update if execution has percolated up to a higher depth.
if call_access.depth == ecx.journaled_state.depth() {
if let Ok(acc) = ecx.load_account(call.target_address) {
debug_assert!(access_is_call(call_access.kind));
call_access.newBalance = acc.info.balance;
}
}
// Merge the last depth's AccountAccesses into the AccountAccesses at the current
// depth, or push them back onto the pending vector if higher depths were not
// recorded. This preserves ordering of accesses.
if let Some(last) = recorded_account_diffs_stack.last_mut() {
last.append(&mut last_recorded_depth);
} else {
recorded_account_diffs_stack.push(last_recorded_depth);
}
}
}
// At the end of the call,
// we need to check if we've found all the emits.
// We know we've found all the expected emits in the right order
// if the queue is fully matched.
// If it's not fully matched, then either:
// 1. Not enough events were emitted (we'll know this because the amount of times we
// inspected events will be less than the size of the queue) 2. The wrong events
// were emitted (The inspected events should match the size of the queue, but still some
// events will not be matched)
// First, check that we're at the call depth where the emits were declared from.
let should_check_emits = self
.expected_emits
.iter()
.any(|(expected, _)| expected.depth == ecx.journaled_state.depth()) &&
// Ignore staticcalls
!call.is_static;
if should_check_emits {
let expected_counts = self
.expected_emits
.iter()
.filter_map(|(expected, count_map)| {
let count = match expected.address {
Some(emitter) => match count_map.get(&emitter) {
Some(log_count) => expected
.log
.as_ref()
.map(|l| log_count.count(l))
.unwrap_or_else(|| log_count.count_unchecked()),
None => 0,
},
None => match &expected.log {
Some(log) => count_map.values().map(|logs| logs.count(log)).sum(),
None => count_map.values().map(|logs| logs.count_unchecked()).sum(),
},
};
if count != expected.count {
Some((expected, count))
} else {
None
}
})
.collect::<Vec<_>>();
// Not all emits were matched.
if self.expected_emits.iter().any(|(expected, _)| !expected.found) {
outcome.result.result = InstructionResult::Revert;
outcome.result.output = "log != expected log".abi_encode().into();
return outcome;
}
if !expected_counts.is_empty() {
let msg = if outcome.result.is_ok() {
let (expected, count) = expected_counts.first().unwrap();
format!("log emitted {count} times, expected {}", expected.count)
} else {
"expected an emit, but the call reverted instead. \
ensure you're testing the happy path when using `expectEmit`"
.to_string()
};
outcome.result.result = InstructionResult::Revert;
outcome.result.output = Error::encode(msg);
return outcome;
}
// All emits were found, we're good.
// Clear the queue, as we expect the user to declare more events for the next call
// if they wanna match further events.
self.expected_emits.clear()
}
// this will ensure we don't have false positives when trying to diagnose reverts in fork
// mode
let diag = self.fork_revert_diagnostic.take();
// if there's a revert and a previous call was diagnosed as fork related revert then we can
// return a better error here
if outcome.result.is_revert() {
if let Some(err) = diag {
outcome.result.output = Error::encode(err.to_error_msg(&self.labels));
return outcome;
}
}
// try to diagnose reverts in multi-fork mode where a call is made to an address that does
// not exist
if let TxKind::Call(test_contract) = ecx.env.tx.transact_to {
// if a call to a different contract than the original test contract returned with
// `Stop` we check if the contract actually exists on the active fork
if ecx.db.is_forked_mode() &&
outcome.result.result == InstructionResult::Stop &&
call.target_address != test_contract
{
self.fork_revert_diagnostic =
ecx.db.diagnose_revert(call.target_address, &ecx.journaled_state);
}
}
// If the depth is 0, then this is the root call terminating
if ecx.journaled_state.depth() == 0 {
// If we already have a revert, we shouldn't run the below logic as it can obfuscate an
// earlier error that happened first with unrelated information about
// another error when using cheatcodes.
if outcome.result.is_revert() {
return outcome;
}
// If there's not a revert, we can continue on to run the last logic for expect*
// cheatcodes. Match expected calls
for (address, calldatas) in &self.expected_calls {
// Loop over each address, and for each address, loop over each calldata it expects.
for (calldata, (expected, actual_count)) in calldatas {
// Grab the values we expect to see
let ExpectedCallData { gas, min_gas, value, count, call_type } = expected;
let failed = match call_type {
// If the cheatcode was called with a `count` argument,
// we must check that the EVM performed a CALL with this calldata exactly
// `count` times.
ExpectedCallType::Count => *count != *actual_count,
// If the cheatcode was called without a `count` argument,
// we must check that the EVM performed a CALL with this calldata at least
// `count` times. The amount of times to check was
// the amount of time the cheatcode was called.
ExpectedCallType::NonCount => *count > *actual_count,
};
if failed {
let expected_values = [
Some(format!("data {}", hex::encode_prefixed(calldata))),
value.as_ref().map(|v| format!("value {v}")),
gas.map(|g| format!("gas {g}")),
min_gas.map(|g| format!("minimum gas {g}")),
]
.into_iter()
.flatten()
.join(", ");
let but = if outcome.result.is_ok() {
let s = if *actual_count == 1 { "" } else { "s" };
format!("was called {actual_count} time{s}")
} else {
"the call reverted instead; \
ensure you're testing the happy path when using `expectCall`"
.to_string()
};
let s = if *count == 1 { "" } else { "s" };
let msg = format!(
"expected call to {address} with {expected_values} \
to be called {count} time{s}, but {but}"
);
outcome.result.result = InstructionResult::Revert;
outcome.result.output = Error::encode(msg);
return outcome;
}
}
}
// Check if we have any leftover expected emits
// First, if any emits were found at the root call, then we its ok and we remove them.
self.expected_emits.retain(|(expected, _)| expected.count > 0 && !expected.found);
// If not empty, we got mismatched emits
if !self.expected_emits.is_empty() {
let msg = if outcome.result.is_ok() {
"expected an emit, but no logs were emitted afterwards. \
you might have mismatched events or not enough events were emitted"
} else {
"expected an emit, but the call reverted instead. \
ensure you're testing the happy path when using `expectEmit`"
};
outcome.result.result = InstructionResult::Revert;
outcome.result.output = Error::encode(msg);
return outcome;
}
}
outcome
}
fn create(&mut self, ecx: Ecx, call: &mut CreateInputs) -> Option<CreateOutcome> {
self.create_common(ecx, call)
}
fn create_end(
&mut self,
ecx: Ecx,
_call: &CreateInputs,
outcome: CreateOutcome,
) -> CreateOutcome {
self.create_end_common(ecx, outcome)
}
fn eofcreate(&mut self, ecx: Ecx, call: &mut EOFCreateInputs) -> Option<CreateOutcome> {
self.create_common(ecx, call)
}
fn eofcreate_end(
&mut self,
ecx: Ecx,
_call: &EOFCreateInputs,
outcome: CreateOutcome,
) -> CreateOutcome {
self.create_end_common(ecx, outcome)
}
}
impl InspectorExt for Cheatcodes {
fn should_use_create2_factory(&mut self, ecx: Ecx, inputs: &mut CreateInputs) -> bool {
if let CreateScheme::Create2 { .. } = inputs.scheme {
let target_depth = if let Some(prank) = &self.prank {
prank.depth
} else if let Some(broadcast) = &self.broadcast {
broadcast.depth
} else {
1
};
ecx.journaled_state.depth() == target_depth &&
(self.broadcast.is_some() || self.config.always_use_create_2_factory)
} else {
false
}
}
fn create2_deployer(&self) -> Address {
self.config.evm_opts.create2_deployer
}
}
impl Cheatcodes {
#[cold]
fn meter_gas(&mut self, interpreter: &mut Interpreter) {
if let Some(paused_gas) = self.gas_metering.paused_frames.last() {
// Keep gas constant if paused.
interpreter.gas = *paused_gas;
} else {
// Record frame paused gas.
self.gas_metering.paused_frames.push(interpreter.gas);
}
}
#[cold]
fn meter_gas_record(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
if matches!(interpreter.instruction_result, InstructionResult::Continue) {
self.gas_metering.gas_records.iter_mut().for_each(|record| {
if ecx.journaled_state.depth() == record.depth {
// Skip the first opcode of the first call frame as it includes the gas cost of
// creating the snapshot.
if self.gas_metering.last_gas_used != 0 {
let gas_diff =
interpreter.gas.spent().saturating_sub(self.gas_metering.last_gas_used);
record.gas_used = record.gas_used.saturating_add(gas_diff);
}
// Update `last_gas_used` to the current spent gas for the next iteration to
// compare against.
self.gas_metering.last_gas_used = interpreter.gas.spent();
}
});
}
}
#[cold]
fn meter_gas_end(&mut self, interpreter: &mut Interpreter) {
// Remove recorded gas if we exit frame.
if will_exit(interpreter.instruction_result) {
self.gas_metering.paused_frames.pop();
}
}
#[cold]
fn meter_gas_reset(&mut self, interpreter: &mut Interpreter) {
interpreter.gas = Gas::new(interpreter.gas().limit());
self.gas_metering.reset = false;
}
#[cold]
fn meter_gas_check(&mut self, interpreter: &mut Interpreter) {
if will_exit(interpreter.instruction_result) {
// Reset gas if spent is less than refunded.
// This can happen if gas was paused / resumed or reset.
// https://github.com/foundry-rs/foundry/issues/4370
if interpreter.gas.spent() <
u64::try_from(interpreter.gas.refunded()).unwrap_or_default()
{
interpreter.gas = Gas::new(interpreter.gas.limit());
}
}
}
/// Generates or copies arbitrary values for storage slots.
/// Invoked in inspector `step_end` (when the current opcode is not executed), if current opcode
/// to execute is `SLOAD` and storage slot is cold.
/// Ensures that in next step (when `SLOAD` opcode is executed) an arbitrary value is returned:
/// - copies the existing arbitrary storage value (or the new generated one if no value in
/// cache) from mapped source address to the target address.
/// - generates arbitrary value and saves it in target address storage.
#[cold]
fn arbitrary_storage_end(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
let (key, target_address) = if interpreter.current_opcode() == op::SLOAD {
(try_or_return!(interpreter.stack().peek(0)), interpreter.contract().target_address)
} else {
return
};
let Ok(value) = ecx.sload(target_address, key) else {
return;
};
if value.is_cold && value.data.is_zero() {
if self.has_arbitrary_storage(&target_address) {
let arbitrary_value = self.rng().gen();
self.arbitrary_storage.as_mut().unwrap().save(
&mut ecx.inner,
target_address,
key,
arbitrary_value,
);
} else if self.is_arbitrary_storage_copy(&target_address) {
let arbitrary_value = self.rng().gen();
self.arbitrary_storage.as_mut().unwrap().copy(
&mut ecx.inner,
target_address,
key,
arbitrary_value,
);
}
}
}
/// Records storage slots reads and writes.
#[cold]
fn record_accesses(&mut self, interpreter: &mut Interpreter) {
let Some(access) = &mut self.accesses else { return };
match interpreter.current_opcode() {
op::SLOAD => {
let key = try_or_return!(interpreter.stack().peek(0));
access.record_read(interpreter.contract().target_address, key);
}
op::SSTORE => {
let key = try_or_return!(interpreter.stack().peek(0));
access.record_write(interpreter.contract().target_address, key);
}
_ => {}
}
}
#[cold]
fn record_state_diffs(&mut self, interpreter: &mut Interpreter, ecx: Ecx) {
let Some(account_accesses) = &mut self.recorded_account_diffs_stack else { return };
match interpreter.current_opcode() {
op::SELFDESTRUCT => {
// Ensure that we're not selfdestructing a context recording was initiated on
let Some(last) = account_accesses.last_mut() else { return };
// get previous balance and initialized status of the target account
let target = try_or_return!(interpreter.stack().peek(0));
let target = Address::from_word(B256::from(target));
let (initialized, old_balance) = ecx
.load_account(target)
.map(|account| (account.info.exists(), account.info.balance))
.unwrap_or_default();
// load balance of this account
let value = ecx
.balance(interpreter.contract().target_address)
.map(|b| b.data)
.unwrap_or(U256::ZERO);
// register access for the target account
last.push(crate::Vm::AccountAccess {
chainInfo: crate::Vm::ChainInfo {
forkId: ecx.db.active_fork_id().unwrap_or_default(),
chainId: U256::from(ecx.env.cfg.chain_id),
},
accessor: interpreter.contract().target_address,
account: target,
kind: crate::Vm::AccountAccessKind::SelfDestruct,
initialized,
oldBalance: old_balance,
newBalance: old_balance + value,
value,
data: Bytes::new(),
reverted: false,
deployedCode: Bytes::new(),
storageAccesses: vec![],
depth: ecx.journaled_state.depth(),
});
}
op::SLOAD => {
let Some(last) = account_accesses.last_mut() else { return };
let key = try_or_return!(interpreter.stack().peek(0));
let address = interpreter.contract().target_address;
// Try to include present value for informational purposes, otherwise assume
// it's not set (zero value)
let mut present_value = U256::ZERO;
// Try to load the account and the slot's present value
if ecx.load_account(address).is_ok() {
if let Ok(previous) = ecx.sload(address, key) {
present_value = previous.data;
}
}
let access = crate::Vm::StorageAccess {
account: interpreter.contract().target_address,
slot: key.into(),
isWrite: false,
previousValue: present_value.into(),
newValue: present_value.into(),
reverted: false,
};
append_storage_access(last, access, ecx.journaled_state.depth());
}
op::SSTORE => {
let Some(last) = account_accesses.last_mut() else { return };
let key = try_or_return!(interpreter.stack().peek(0));
let value = try_or_return!(interpreter.stack().peek(1));
let address = interpreter.contract().target_address;
// Try to load the account and the slot's previous value, otherwise, assume it's
// not set (zero value)
let mut previous_value = U256::ZERO;
if ecx.load_account(address).is_ok() {
if let Ok(previous) = ecx.sload(address, key) {
previous_value = previous.data;
}
}
let access = crate::Vm::StorageAccess {
account: address,
slot: key.into(),
isWrite: true,
previousValue: previous_value.into(),
newValue: value.into(),
reverted: false,
};
append_storage_access(last, access, ecx.journaled_state.depth());
}
// Record account accesses via the EXT family of opcodes
op::EXTCODECOPY | op::EXTCODESIZE | op::EXTCODEHASH | op::BALANCE => {
let kind = match interpreter.current_opcode() {
op::EXTCODECOPY => crate::Vm::AccountAccessKind::Extcodecopy,
op::EXTCODESIZE => crate::Vm::AccountAccessKind::Extcodesize,
op::EXTCODEHASH => crate::Vm::AccountAccessKind::Extcodehash,
op::BALANCE => crate::Vm::AccountAccessKind::Balance,
_ => unreachable!(),
};
let address =
Address::from_word(B256::from(try_or_return!(interpreter.stack().peek(0))));
let initialized;
let balance;
if let Ok(acc) = ecx.load_account(address) {
initialized = acc.info.exists();
balance = acc.info.balance;
} else {
initialized = false;
balance = U256::ZERO;
}
let account_access = crate::Vm::AccountAccess {
chainInfo: crate::Vm::ChainInfo {
forkId: ecx.db.active_fork_id().unwrap_or_default(),
chainId: U256::from(ecx.env.cfg.chain_id),
},
accessor: interpreter.contract().target_address,
account: address,
kind,
initialized,
oldBalance: balance,
newBalance: balance,
value: U256::ZERO,
data: Bytes::new(),
reverted: false,
deployedCode: Bytes::new(),
storageAccesses: vec![],
depth: ecx.journaled_state.depth(),
};
// Record the EXT* call as an account access at the current depth
// (future storage accesses will be recorded in a new "Resume" context)
if let Some(last) = account_accesses.last_mut() {
last.push(account_access);
} else {
account_accesses.push(vec![account_access]);
}
}
_ => {}
}
}
/// Checks to see if the current opcode can either mutate directly or expand memory.
///
/// If the opcode at the current program counter is a match, check if the modified memory lies
/// within the allowed ranges. If not, revert and fail the test.
#[cold]
fn check_mem_opcodes(&self, interpreter: &mut Interpreter, depth: u64) {
let Some(ranges) = self.allowed_mem_writes.get(&depth) else {
return;
};
// The `mem_opcode_match` macro is used to match the current opcode against a list of
// opcodes that can mutate memory (either directly or expansion via reading). If the
// opcode is a match, the memory offsets that are being written to are checked to be
// within the allowed ranges. If not, the test is failed and the transaction is
// reverted. For all opcodes that can mutate memory aside from MSTORE,
// MSTORE8, and MLOAD, the size and destination offset are on the stack, and
// the macro expands all of these cases. For MSTORE, MSTORE8, and MLOAD, the
// size of the memory write is implicit, so these cases are hard-coded.
macro_rules! mem_opcode_match {
($(($opcode:ident, $offset_depth:expr, $size_depth:expr, $writes:expr)),* $(,)?) => {
match interpreter.current_opcode() {
////////////////////////////////////////////////////////////////
// OPERATIONS THAT CAN EXPAND/MUTATE MEMORY BY WRITING //
////////////////////////////////////////////////////////////////
op::MSTORE => {
// The offset of the mstore operation is at the top of the stack.
let offset = try_or_return!(interpreter.stack().peek(0)).saturating_to::<u64>();
// If none of the allowed ranges contain [offset, offset + 32), memory has been
// unexpectedly mutated.
if !ranges.iter().any(|range| {
range.contains(&offset) && range.contains(&(offset + 31))
}) {
// SPECIAL CASE: When the compiler attempts to store the selector for
// `stopExpectSafeMemory`, this is allowed. It will do so at the current free memory
// pointer, which could have been updated to the exclusive upper bound during
// execution.
let value = try_or_return!(interpreter.stack().peek(1)).to_be_bytes::<32>();
if value[..SELECTOR_LEN] == stopExpectSafeMemoryCall::SELECTOR {
return
}
disallowed_mem_write(offset, 32, interpreter, ranges);
return
}
}
op::MSTORE8 => {
// The offset of the mstore8 operation is at the top of the stack.
let offset = try_or_return!(interpreter.stack().peek(0)).saturating_to::<u64>();
// If none of the allowed ranges contain the offset, memory has been
// unexpectedly mutated.
if !ranges.iter().any(|range| range.contains(&offset)) {
disallowed_mem_write(offset, 1, interpreter, ranges);
return
}
}
////////////////////////////////////////////////////////////////
// OPERATIONS THAT CAN EXPAND MEMORY BY READING //
////////////////////////////////////////////////////////////////
op::MLOAD => {
// The offset of the mload operation is at the top of the stack
let offset = try_or_return!(interpreter.stack().peek(0)).saturating_to::<u64>();
// If the offset being loaded is >= than the memory size, the
// memory is being expanded. If none of the allowed ranges contain
// [offset, offset + 32), memory has been unexpectedly mutated.
if offset >= interpreter.shared_memory.len() as u64 && !ranges.iter().any(|range| {
range.contains(&offset) && range.contains(&(offset + 31))
}) {
disallowed_mem_write(offset, 32, interpreter, ranges);
return
}
}
////////////////////////////////////////////////////////////////
// OPERATIONS WITH OFFSET AND SIZE ON STACK //
////////////////////////////////////////////////////////////////
op::CALL => {
// The destination offset of the operation is the fifth element on the stack.
let dest_offset = try_or_return!(interpreter.stack().peek(5)).saturating_to::<u64>();
// The size of the data that will be copied is the sixth element on the stack.
let size = try_or_return!(interpreter.stack().peek(6)).saturating_to::<u64>();
// If none of the allowed ranges contain [dest_offset, dest_offset + size),
// memory outside of the expected ranges has been touched. If the opcode
// only reads from memory, this is okay as long as the memory is not expanded.
let fail_cond = !ranges.iter().any(|range| {
range.contains(&dest_offset) &&
range.contains(&(dest_offset + size.saturating_sub(1)))
});
// If the failure condition is met, set the output buffer to a revert string
// that gives information about the allowed ranges and revert.
if fail_cond {
// SPECIAL CASE: When a call to `stopExpectSafeMemory` is performed, this is allowed.
// It allocated calldata at the current free memory pointer, and will attempt to read
// from this memory region to perform the call.
let to = Address::from_word(try_or_return!(interpreter.stack().peek(1)).to_be_bytes::<32>().into());
if to == CHEATCODE_ADDRESS {
let args_offset = try_or_return!(interpreter.stack().peek(3)).saturating_to::<usize>();
let args_size = try_or_return!(interpreter.stack().peek(4)).saturating_to::<usize>();
let memory_word = interpreter.shared_memory.slice(args_offset, args_size);
if memory_word[..SELECTOR_LEN] == stopExpectSafeMemoryCall::SELECTOR {
return
}
}
disallowed_mem_write(dest_offset, size, interpreter, ranges);
return
}
}
$(op::$opcode => {
// The destination offset of the operation.
let dest_offset = try_or_return!(interpreter.stack().peek($offset_depth)).saturating_to::<u64>();
// The size of the data that will be copied.
let size = try_or_return!(interpreter.stack().peek($size_depth)).saturating_to::<u64>();
// If none of the allowed ranges contain [dest_offset, dest_offset + size),
// memory outside of the expected ranges has been touched. If the opcode
// only reads from memory, this is okay as long as the memory is not expanded.
let fail_cond = !ranges.iter().any(|range| {
range.contains(&dest_offset) &&
range.contains(&(dest_offset + size.saturating_sub(1)))
}) && ($writes ||
[dest_offset, (dest_offset + size).saturating_sub(1)].into_iter().any(|offset| {
offset >= interpreter.shared_memory.len() as u64
})
);
// If the failure condition is met, set the output buffer to a revert string
// that gives information about the allowed ranges and revert.
if fail_cond {
disallowed_mem_write(dest_offset, size, interpreter, ranges);
return
}
})*
_ => {}
}
}
}
// Check if the current opcode can write to memory, and if so, check if the memory
// being written to is registered as safe to modify.
mem_opcode_match!(
(CALLDATACOPY, 0, 2, true),
(CODECOPY, 0, 2, true),
(RETURNDATACOPY, 0, 2, true),
(EXTCODECOPY, 1, 3, true),
(CALLCODE, 5, 6, true),
(STATICCALL, 4, 5, true),
(DELEGATECALL, 4, 5, true),
(KECCAK256, 0, 1, false),
(LOG0, 0, 1, false),
(LOG1, 0, 1, false),
(LOG2, 0, 1, false),
(LOG3, 0, 1, false),
(LOG4, 0, 1, false),
(CREATE, 1, 2, false),
(CREATE2, 1, 2, false),
(RETURN, 0, 1, false),
(REVERT, 0, 1, false),
);
}
}
/// Helper that expands memory, stores a revert string pertaining to a disallowed memory write,
/// and sets the return range to the revert string's location in memory.
///
/// This will set the interpreter's next action to a return with the revert string as the output.
/// And trigger a revert.
fn disallowed_mem_write(
dest_offset: u64,
size: u64,
interpreter: &mut Interpreter,
ranges: &[Range<u64>],
) {
let revert_string = format!(
"memory write at offset 0x{:02X} of size 0x{:02X} not allowed; safe range: {}",
dest_offset,
size,
ranges.iter().map(|r| format!("(0x{:02X}, 0x{:02X}]", r.start, r.end)).join(" U ")
);
interpreter.instruction_result = InstructionResult::Revert;
interpreter.next_action = InterpreterAction::Return {
result: InterpreterResult {
output: Error::encode(revert_string),
gas: interpreter.gas,
result: InstructionResult::Revert,
},
};
}
// Determines if the gas limit on a given call was manually set in the script and should therefore
// not be overwritten by later estimations
fn check_if_fixed_gas_limit(ecx: InnerEcx, call_gas_limit: u64) -> bool {
// If the gas limit was not set in the source code it is set to the estimated gas left at the
// time of the call, which should be rather close to configured gas limit.
// TODO: Find a way to reliably make this determination.
// For example by generating it in the compilation or EVM simulation process
U256::from(ecx.env.tx.gas_limit) > ecx.env.block.gas_limit &&
U256::from(call_gas_limit) <= ecx.env.block.gas_limit
// Transfers in forge scripts seem to be estimated at 2300 by revm leading to "Intrinsic
// gas too low" failure when simulated on chain
&& call_gas_limit > 2300
}
/// Returns true if the kind of account access is a call.
fn access_is_call(kind: crate::Vm::AccountAccessKind) -> bool {
matches!(
kind,
crate::Vm::AccountAccessKind::Call |
crate::Vm::AccountAccessKind::StaticCall |
crate::Vm::AccountAccessKind::CallCode |
crate::Vm::AccountAccessKind::DelegateCall
)
}
/// Appends an AccountAccess that resumes the recording of the current context.
fn append_storage_access(
last: &mut Vec<AccountAccess>,
storage_access: crate::Vm::StorageAccess,
storage_depth: u64,
) {
// Assert that there's an existing record for the current context.
if !last.is_empty() && last.first().unwrap().depth < storage_depth {
// Three cases to consider:
// 1. If there hasn't been a context switch since the start of this context, then add the
// storage access to the current context record.
// 2. If there's an existing Resume record, then add the storage access to it.
// 3. Otherwise, create a new Resume record based on the current context.
if last.len() == 1 {
last.first_mut().unwrap().storageAccesses.push(storage_access);
} else {
let last_record = last.last_mut().unwrap();
if last_record.kind as u8 == crate::Vm::AccountAccessKind::Resume as u8 {
last_record.storageAccesses.push(storage_access);
} else {
let entry = last.first().unwrap();
let resume_record = crate::Vm::AccountAccess {
chainInfo: crate::Vm::ChainInfo {
forkId: entry.chainInfo.forkId,
chainId: entry.chainInfo.chainId,
},
accessor: entry.accessor,
account: entry.account,
kind: crate::Vm::AccountAccessKind::Resume,
initialized: entry.initialized,
storageAccesses: vec![storage_access],
reverted: entry.reverted,
// The remaining fields are defaults
oldBalance: U256::ZERO,
newBalance: U256::ZERO,
value: U256::ZERO,
data: Bytes::new(),
deployedCode: Bytes::new(),
depth: entry.depth,
};
last.push(resume_record);
}
}
}
}
/// Dispatches the cheatcode call to the appropriate function.
fn apply_dispatch(
calls: &Vm::VmCalls,
ccx: &mut CheatsCtxt,
executor: &mut dyn CheatcodesExecutor,
) -> Result {
let cheat = calls_as_dyn_cheatcode(calls);
let _guard = debug_span!(target: "cheatcodes", "apply", id = %cheat.id()).entered();
trace!(target: "cheatcodes", cheat = ?cheat.as_debug(), "applying");
if let spec::Status::Deprecated(replacement) = *cheat.status() {
ccx.state.deprecated.insert(cheat.signature(), replacement);
}
// Apply the cheatcode.
let mut result = cheat.dyn_apply(ccx, executor);
// Format the error message to include the cheatcode name.
if let Err(e) = &mut result {
if e.is_str() {
let name = cheat.name();
// Skip showing the cheatcode name for:
// - assertions: too verbose, and can already be inferred from the error message
// - `rpcUrl`: forge-std relies on it in `getChainWithUpdatedRpcUrl`
if !name.contains("assert") && name != "rpcUrl" {
*e = fmt_err!("vm.{name}: {e}");
}
}
}
trace!(
target: "cheatcodes",
return = %match &result {
Ok(b) => hex::encode(b),
Err(e) => e.to_string(),
}
);
result
}
fn calls_as_dyn_cheatcode(calls: &Vm::VmCalls) -> &dyn DynCheatcode {
macro_rules! as_dyn {
($($variant:ident),*) => {
match calls {
$(Vm::VmCalls::$variant(cheat) => cheat,)*
}
};
}
vm_calls!(as_dyn)
}
/// Helper function to check if frame execution will exit.
fn will_exit(ir: InstructionResult) -> bool {
!matches!(ir, InstructionResult::Continue | InstructionResult::CallOrCreate)
}