Enum BitDomain
pub enum BitDomain<'a, M = Const, T = usize, O = Lsb0>where
M: Mutability,
T: 'a + BitStore,
O: BitOrder,
Address<M, BitSlice<T, O>>: Referential<'a>,
Address<M, BitSlice<<T as BitStore>::Unalias, O>>: Referential<'a>,{
Enclave(<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref),
Region {
head: <Address<M, BitSlice<T, O>> as Referential<'a>>::Ref,
body: <Address<M, BitSlice<<T as BitStore>::Unalias, O>> as Referential<'a>>::Ref,
tail: <Address<M, BitSlice<T, O>> as Referential<'a>>::Ref,
},
}
Expand description
§Bit-Slice Partitioning
This enum partitions a bit-slice into its head- and tail- edge bit-slices, and its interior body bit-slice, according to the definitions laid out in the module documentation.
It fragments a BitSlice
into smaller BitSlice
s, and allows the interior
bit-slice to become ::Unalias
ed. This is useful when you need to retain a
bit-slice view of memory, but wish to remove synchronization costs imposed by a
prior call to .split_at_mut()
for as much of the bit-slice as possible.
§Why Not Option
?
The Enclave
variant always contains as its single field the exact bit-slice
that created the Enclave
. As such, this type is easily replaceäble with an
Option
of the Region
variant, which when None
is understood to be the
original.
This exists as a dedicated enum, even with a technically useless variant, in
order to mirror the shape of the element-domain enum. This type should be
understood as a shortcut to the end result of splitting by element-domain, then
mapping each PartialElement
and slice back into BitSlice
s, rather than
testing whether a bit-slice can be split on alias boundaries.
You can get the alternate behavior, of testing whether or not a bit-slice can be
split into a Region
or is unsplittable, by calling .bit_domain().region()
to produce exactly such an Option
.
Variants§
Enclave(<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref)
Indicates that a bit-slice’s contents are entirely in the interior indices of a single memory element.
The contained value is always the bit-slice that created this view.
Region
Indicates that a bit-slice’s contents touch an element edge.
This splits the bit-slice into three partitions, each of which may be empty: two partially-occupied edge elements, with their original type status, and one interior span, which is known to not have any other aliases derived from the bit-slice that created this view.
Fields
head: <Address<M, BitSlice<T, O>> as Referential<'a>>::Ref
Any bits that partially-fill the first element of the underlying storage region.
This does not modify its aliasing status, as it will already be appropriately marked before this view is constructed.
body: <Address<M, BitSlice<<T as BitStore>::Unalias, O>> as Referential<'a>>::Ref
Any bits that wholly-fill elements in the interior of the bit-slice.
This is marked as unaliased, because it is statically impossible for
any other handle derived from the source bit-slice to have
conflicting access to the region of memory it describes. As such,
even a bit-slice that was marked as ::Alias
can revert this
protection on the known-unaliased interior.
Proofs:
- Rust’s
&
/&mut
exclusion rules universally apply. If a reference exists, no other reference has unsynchronized write capability. BitStore::Unalias
only modifies unsynchronized types.Cell
and atomic types unalias to themselves, and retain their original behavior.
Implementations§
§impl<'a, M, T, O> BitDomain<'a, M, T, O>
impl<'a, M, T, O> BitDomain<'a, M, T, O>
pub fn enclave(
self,
) -> Option<<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref>
pub fn enclave( self, ) -> Option<<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref>
Attempts to unpack the bit-domain as an Enclave
variant. This is
just a shorthand for explicit destructuring.
pub fn region(
self,
) -> Option<(<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref, <Address<M, BitSlice<<T as BitStore>::Unalias, O>> as Referential<'a>>::Ref, <Address<M, BitSlice<T, O>> as Referential<'a>>::Ref)>
pub fn region( self, ) -> Option<(<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref, <Address<M, BitSlice<<T as BitStore>::Unalias, O>> as Referential<'a>>::Ref, <Address<M, BitSlice<T, O>> as Referential<'a>>::Ref)>
Attempts to unpack the bit-domain as a Region
variant. This is just
a shorthand for explicit destructuring.
Trait Implementations§
§impl<'a, M, T, O> Debug for BitDomain<'a, M, T, O>where
M: Mutability,
T: 'a + BitStore,
O: BitOrder,
Address<M, BitSlice<T, O>>: Referential<'a>,
Address<M, BitSlice<<T as BitStore>::Unalias, O>>: Referential<'a>,
<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref: Debug,
<Address<M, BitSlice<<T as BitStore>::Unalias, O>> as Referential<'a>>::Ref: Debug,
impl<'a, M, T, O> Debug for BitDomain<'a, M, T, O>where
M: Mutability,
T: 'a + BitStore,
O: BitOrder,
Address<M, BitSlice<T, O>>: Referential<'a>,
Address<M, BitSlice<<T as BitStore>::Unalias, O>>: Referential<'a>,
<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref: Debug,
<Address<M, BitSlice<<T as BitStore>::Unalias, O>> as Referential<'a>>::Ref: Debug,
§impl<'a, M, T, O> Default for BitDomain<'a, M, T, O>where
M: Mutability,
T: 'a + BitStore,
O: BitOrder,
Address<M, BitSlice<T, O>>: Referential<'a>,
Address<M, BitSlice<<T as BitStore>::Unalias, O>>: Referential<'a>,
<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref: Default,
<Address<M, BitSlice<<T as BitStore>::Unalias, O>> as Referential<'a>>::Ref: Default,
impl<'a, M, T, O> Default for BitDomain<'a, M, T, O>where
M: Mutability,
T: 'a + BitStore,
O: BitOrder,
Address<M, BitSlice<T, O>>: Referential<'a>,
Address<M, BitSlice<<T as BitStore>::Unalias, O>>: Referential<'a>,
<Address<M, BitSlice<T, O>> as Referential<'a>>::Ref: Default,
<Address<M, BitSlice<<T as BitStore>::Unalias, O>> as Referential<'a>>::Ref: Default,
impl<T, O> Copy for BitDomain<'_, Const, T, O>
Auto Trait Implementations§
impl<'a, M = Const, T = usize, O = Lsb0> !Freeze for BitDomain<'a, M, T, O>
impl<'a, M = Const, T = usize, O = Lsb0> !RefUnwindSafe for BitDomain<'a, M, T, O>
impl<'a, M = Const, T = usize, O = Lsb0> !Send for BitDomain<'a, M, T, O>
impl<'a, M = Const, T = usize, O = Lsb0> !Sync for BitDomain<'a, M, T, O>
impl<'a, M = Const, T = usize, O = Lsb0> !Unpin for BitDomain<'a, M, T, O>
impl<'a, M = Const, T = usize, O = Lsb0> !UnwindSafe for BitDomain<'a, M, T, O>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<T> Conv for T
impl<T> Conv for T
§impl<T> FmtForward for T
impl<T> FmtForward for T
§fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
fn fmt_binary(self) -> FmtBinary<Self>where
Self: Binary,
self
to use its Binary
implementation when Debug
-formatted.§fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
fn fmt_display(self) -> FmtDisplay<Self>where
Self: Display,
self
to use its Display
implementation when
Debug
-formatted.§fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
fn fmt_lower_exp(self) -> FmtLowerExp<Self>where
Self: LowerExp,
self
to use its LowerExp
implementation when
Debug
-formatted.§fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
fn fmt_lower_hex(self) -> FmtLowerHex<Self>where
Self: LowerHex,
self
to use its LowerHex
implementation when
Debug
-formatted.§fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
fn fmt_octal(self) -> FmtOctal<Self>where
Self: Octal,
self
to use its Octal
implementation when Debug
-formatted.§fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
fn fmt_pointer(self) -> FmtPointer<Self>where
Self: Pointer,
self
to use its Pointer
implementation when
Debug
-formatted.§fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
fn fmt_upper_exp(self) -> FmtUpperExp<Self>where
Self: UpperExp,
self
to use its UpperExp
implementation when
Debug
-formatted.§fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
fn fmt_upper_hex(self) -> FmtUpperHex<Self>where
Self: UpperHex,
self
to use its UpperHex
implementation when
Debug
-formatted.§fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
fn fmt_list(self) -> FmtList<Self>where
&'a Self: for<'a> IntoIterator,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§impl<T> IntoRequest<T> for T
impl<T> IntoRequest<T> for T
Source§fn into_request(self) -> Request<T>
fn into_request(self) -> Request<T>
T
in a tonic::Request
§impl<T> Paint for Twhere
T: ?Sized,
impl<T> Paint for Twhere
T: ?Sized,
§fn fg(&self, value: Color) -> Painted<&T>
fn fg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the foreground set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like red()
and
green()
, which have the same functionality but are
pithier.
§Example
Set foreground color to white using fg()
:
use yansi::{Paint, Color};
painted.fg(Color::White);
Set foreground color to white using white()
.
use yansi::Paint;
painted.white();
§fn bright_black(&self) -> Painted<&T>
fn bright_black(&self) -> Painted<&T>
§fn bright_red(&self) -> Painted<&T>
fn bright_red(&self) -> Painted<&T>
§fn bright_green(&self) -> Painted<&T>
fn bright_green(&self) -> Painted<&T>
§fn bright_yellow(&self) -> Painted<&T>
fn bright_yellow(&self) -> Painted<&T>
§fn bright_blue(&self) -> Painted<&T>
fn bright_blue(&self) -> Painted<&T>
§fn bright_magenta(&self) -> Painted<&T>
fn bright_magenta(&self) -> Painted<&T>
§fn bright_cyan(&self) -> Painted<&T>
fn bright_cyan(&self) -> Painted<&T>
§fn bright_white(&self) -> Painted<&T>
fn bright_white(&self) -> Painted<&T>
§fn bg(&self, value: Color) -> Painted<&T>
fn bg(&self, value: Color) -> Painted<&T>
Returns a styled value derived from self
with the background set to
value
.
This method should be used rarely. Instead, prefer to use color-specific
builder methods like on_red()
and
on_green()
, which have the same functionality but
are pithier.
§Example
Set background color to red using fg()
:
use yansi::{Paint, Color};
painted.bg(Color::Red);
Set background color to red using on_red()
.
use yansi::Paint;
painted.on_red();
§fn on_primary(&self) -> Painted<&T>
fn on_primary(&self) -> Painted<&T>
§fn on_magenta(&self) -> Painted<&T>
fn on_magenta(&self) -> Painted<&T>
§fn on_bright_black(&self) -> Painted<&T>
fn on_bright_black(&self) -> Painted<&T>
§fn on_bright_red(&self) -> Painted<&T>
fn on_bright_red(&self) -> Painted<&T>
§fn on_bright_green(&self) -> Painted<&T>
fn on_bright_green(&self) -> Painted<&T>
§fn on_bright_yellow(&self) -> Painted<&T>
fn on_bright_yellow(&self) -> Painted<&T>
§fn on_bright_blue(&self) -> Painted<&T>
fn on_bright_blue(&self) -> Painted<&T>
§fn on_bright_magenta(&self) -> Painted<&T>
fn on_bright_magenta(&self) -> Painted<&T>
§fn on_bright_cyan(&self) -> Painted<&T>
fn on_bright_cyan(&self) -> Painted<&T>
§fn on_bright_white(&self) -> Painted<&T>
fn on_bright_white(&self) -> Painted<&T>
§fn attr(&self, value: Attribute) -> Painted<&T>
fn attr(&self, value: Attribute) -> Painted<&T>
Enables the styling [Attribute
] value
.
This method should be used rarely. Instead, prefer to use
attribute-specific builder methods like bold()
and
underline()
, which have the same functionality
but are pithier.
§Example
Make text bold using attr()
:
use yansi::{Paint, Attribute};
painted.attr(Attribute::Bold);
Make text bold using using bold()
.
use yansi::Paint;
painted.bold();
§fn rapid_blink(&self) -> Painted<&T>
fn rapid_blink(&self) -> Painted<&T>
§fn quirk(&self, value: Quirk) -> Painted<&T>
fn quirk(&self, value: Quirk) -> Painted<&T>
Enables the yansi
[Quirk
] value
.
This method should be used rarely. Instead, prefer to use quirk-specific
builder methods like mask()
and
wrap()
, which have the same functionality but are
pithier.
§Example
Enable wrapping using .quirk()
:
use yansi::{Paint, Quirk};
painted.quirk(Quirk::Wrap);
Enable wrapping using wrap()
.
use yansi::Paint;
painted.wrap();
§fn clear(&self) -> Painted<&T>
👎Deprecated since 1.0.1: renamed to resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.
fn clear(&self) -> Painted<&T>
resetting()
due to conflicts with Vec::clear()
.
The clear()
method will be removed in a future release.§fn whenever(&self, value: Condition) -> Painted<&T>
fn whenever(&self, value: Condition) -> Painted<&T>
Conditionally enable styling based on whether the [Condition
] value
applies. Replaces any previous condition.
See the crate level docs for more details.
§Example
Enable styling painted
only when both stdout
and stderr
are TTYs:
use yansi::{Paint, Condition};
painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
§impl<T> Pipe for Twhere
T: ?Sized,
impl<T> Pipe for Twhere
T: ?Sized,
§fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> Rwhere
Self: Sized,
§fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> Rwhere
R: 'a,
self
and passes that borrow into the pipe function. Read more§fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
§fn pipe_borrow_mut<'a, B, R>(
&'a mut self,
func: impl FnOnce(&'a mut B) -> R,
) -> R
fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
§fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
self
, then passes self.as_ref()
into the pipe function.§fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
self
, then passes self.as_mut()
into the pipe
function.§fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
self
, then passes self.deref()
into the pipe function.§impl<T> Pointable for T
impl<T> Pointable for T
§impl<T> Tap for T
impl<T> Tap for T
§fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
Borrow<B>
of a value. Read more§fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
BorrowMut<B>
of a value. Read more§fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
AsRef<R>
view of a value. Read more§fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
AsMut<R>
view of a value. Read more§fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
Deref::Target
of a value. Read more§fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
Deref::Target
of a value. Read more§fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self
.tap()
only in debug builds, and is erased in release builds.§fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self
.tap_mut()
only in debug builds, and is erased in release
builds.§fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
.tap_borrow()
only in debug builds, and is erased in release
builds.§fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
.tap_borrow_mut()
only in debug builds, and is erased in release
builds.§fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
.tap_ref()
only in debug builds, and is erased in release
builds.§fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
.tap_ref_mut()
only in debug builds, and is erased in release
builds.§fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
.tap_deref()
only in debug builds, and is erased in release
builds.§impl<T> TryConv for T
impl<T> TryConv for T
§impl<T> WithSubscriber for T
impl<T> WithSubscriber for T
§fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> ⓘwhere
S: Into<Dispatch>,
fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self> ⓘwhere
S: Into<Dispatch>,
§fn with_current_subscriber(self) -> WithDispatch<Self> ⓘ
fn with_current_subscriber(self) -> WithDispatch<Self> ⓘ
Layout§
Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.