cast::revm::interpreter::primitives::bitvec::prelude

Struct BitRef

#[repr(C, align(8))]
pub struct BitRef<'a, M = Const, T = usize, O = Lsb0>
where M: Mutability, T: BitStore, O: BitOrder,
{ bitptr: BitPtr<M, T, O>, data: bool, _ref: PhantomData<&'a UnsafeCell<bool>>, }
Expand description

§Proxy Bit-Reference

This structure simulates &/mut bool within BitSlice regions. It is analogous to the C++ type std::bitset<N>::reference.

This type wraps a BitPtr and caches a bool in one of the remaining padding bytes. It is then able to freely give out references to its cached bool, and commits the cached value back to the proxied location when dropped.

§Original

This is semantically equivalent to &'a bool or &'a mut bool.

§Quirks

Because this type has both a lifetime and a destructor, it can introduce an uncommon syntax error condition in Rust. When an expression that produces this type is in the final expression of a block, including if that expression is used as a condition in a match, if let, or if, then the compiler will attempt to extend the drop scope of this type to the outside of the block. This causes a lifetime mismatch error if the source region from which this proxy is produced begins its lifetime inside the block.

If you get a compiler error that this type causes something to be dropped while borrowed, you can end the borrow by putting any expression-ending syntax element after the offending expression that produces this type, including a semicolon or an item definition.

§Examples

use bitvec::prelude::*;

let bits = bits![mut 0; 2];

let (left, right) = bits.split_at_mut(1);
let mut first = left.get_mut(0).unwrap();
let second = right.get_mut(0).unwrap();

// Writing through a dereference requires a `mut` binding.
*first = true;
// Writing through the explicit method call does not.
second.commit(true);

drop(first); // It’s not a reference, so NLL does not apply!
assert_eq!(bits, bits![1; 2]);

Fields§

§bitptr: BitPtr<M, T, O>§data: bool§_ref: PhantomData<&'a UnsafeCell<bool>>

Implementations§

§

impl<M, T, O> BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

pub unsafe fn from_bitptr(bitptr: BitPtr<M, T, O>) -> BitRef<'_, M, T, O>

Converts a bit-pointer into a proxy bit-reference.

This reads through the pointer in order to cache the current bit value in the proxy.

§Original

The syntax unsafe { &* ptr }.

§Safety

This is equivalent to (and is!) dereferencing a raw pointer. The pointer must be well-constructed, refer to a live memory location in the program context, and not be aliased beyond its typing indicators.

pub fn into_bitptr(self) -> BitPtr<M, T, O>

Available on non-tarpaulin_include only.

Decays the bit-reference to an ordinary bit-pointer.

§Original

The syntax &val as *T.

§

impl<T, O> BitRef<'_, Mut, T, O>
where T: BitStore, O: BitOrder,

pub fn replace(&mut self, src: bool) -> bool

Moves src into the referenced bit, returning the previous value.

§Original

mem::replace

pub fn swap<T2, O2>(&mut self, other: &mut BitRef<'_, Mut, T2, O2>)
where T2: BitStore, O2: BitOrder,

Swaps the bit values of two proxies.

§Original

mem::swap

pub fn commit(self, value: bool)

Commits a bit into the proxied location.

This function writes value directly into the proxied location, bypassing the cache and destroying the proxy. This eliminates the second write done in the destructor, and allows code to be slightly faster.

pub fn set(&mut self, value: bool)

Writes value into the proxy.

This does not write into the proxied location; that is deferred until the proxy destructor runs.

Trait Implementations§

§

impl<T, O> AsMut<bool> for BitRef<'_, Mut, T, O>
where T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn as_mut(&mut self) -> &mut bool

Converts this type into a mutable reference of the (usually inferred) input type.
§

impl<M, T, O> AsRef<bool> for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn as_ref(&self) -> &bool

Converts this type into a shared reference of the (usually inferred) input type.
§

impl<T, O> Clone for BitRef<'_, Const, T, O>
where T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn clone(&self) -> BitRef<'_, Const, T, O>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<M, T, O> Debug for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<M, T, O> Deref for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

§

type Target = bool

The resulting type after dereferencing.
§

fn deref(&self) -> &<BitRef<'_, M, T, O> as Deref>::Target

Dereferences the value.
§

impl<T, O> DerefMut for BitRef<'_, Mut, T, O>
where T: BitStore, O: BitOrder,

§

fn deref_mut(&mut self) -> &mut <BitRef<'_, Mut, T, O> as Deref>::Target

Mutably dereferences the value.
§

impl<M, T, O> Display for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<M, T, O> Drop for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

§

fn drop(&mut self)

Executes the destructor for this type. Read more
§

impl<'a, M, T1, T2, O1, O2> Extend<BitRef<'a, M, T2, O2>> for BitVec<T1, O1>
where M: Mutability, T1: BitStore, T2: BitStore, O1: BitOrder, O2: BitOrder,

Available on non-tarpaulin_include only.

§Bit-Vector Extension by Proxy References

DO NOT use this. You clearly have a bit-slice. Use .extend_from_bitslice() instead!

Iterating over a bit-slice requires loading from memory and constructing a proxy reference for each bit. This is needlessly slow; the specialized method is able to avoid this per-bit cost and possibly even use batched operations.

§

fn extend<I>(&mut self, iter: I)
where I: IntoIterator<Item = BitRef<'a, M, T2, O2>>,

Extends a collection with the contents of an iterator. Read more
Source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
Source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
§

impl<'a, M, T1, T2, O1, O2> FromIterator<BitRef<'a, M, T2, O2>> for BitVec<T1, O1>
where M: Mutability, T1: BitStore, T2: BitStore, O1: BitOrder, O2: BitOrder,

Available on non-tarpaulin_include only.

§Bit-Vector Collection from Proxy References

DO NOT use this. You clearly have a bit-slice. Use ::from_bitslice() instead!

Iterating over a bit-slice requires loading from memory and constructing a proxy reference for each bit. This is needlessly slow; the specialized method is able to avoid this per-bit cost and possibly even use batched operations.

§

fn from_iter<I>(iter: I) -> BitVec<T1, O1>
where I: IntoIterator<Item = BitRef<'a, M, T2, O2>>,

Creates a value from an iterator. Read more
§

impl<M, T, O> Hash for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
§

impl<M, T, O> Not for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

§

type Output = bool

The resulting type after applying the ! operator.
§

fn not(self) -> <BitRef<'_, M, T, O> as Not>::Output

Performs the unary ! operation. Read more
§

impl<M, T, O> Ord for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn cmp(&self, other: &BitRef<'_, M, T, O>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
§

impl<M, T, O> PartialEq<&bool> for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn eq(&self, other: &&bool) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<M, T, O> PartialEq<BitRef<'_, M, T, O>> for &bool
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn eq(&self, other: &BitRef<'_, M, T, O>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<M, T, O> PartialEq<BitRef<'_, M, T, O>> for bool
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn eq(&self, other: &BitRef<'_, M, T, O>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<M1, M2, O1, O2, T1, T2> PartialEq<BitRef<'_, M2, T2, O2>> for BitRef<'_, M1, T1, O1>
where M1: Mutability, M2: Mutability, T1: BitStore, T2: BitStore, O1: BitOrder, O2: BitOrder,

Available on non-tarpaulin_include only.
§

fn eq(&self, other: &BitRef<'_, M2, T2, O2>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<M, T, O> PartialEq<bool> for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn eq(&self, other: &bool) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl<M, T, O> PartialOrd<&bool> for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn partial_cmp(&self, other: &&bool) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
§

impl<M1, M2, O1, O2, T1, T2> PartialOrd<BitRef<'_, M2, T2, O2>> for BitRef<'_, M1, T1, O1>
where M1: Mutability, M2: Mutability, T1: BitStore, T2: BitStore, O1: BitOrder, O2: BitOrder,

Available on non-tarpaulin_include only.
§

fn partial_cmp(&self, other: &BitRef<'_, M2, T2, O2>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
§

impl<M, T, O> PartialOrd<bool> for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn partial_cmp(&self, other: &bool) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
§

impl<M, T, O> Pointer for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

Available on non-tarpaulin_include only.
§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl<M, T, O> Eq for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore, O: BitOrder,

§

impl<M, T, O> Send for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore + Sync, O: BitOrder,

§

impl<M, T, O> Sync for BitRef<'_, M, T, O>
where M: Mutability, T: BitStore + Sync, O: BitOrder,

Auto Trait Implementations§

§

impl<'a, M, T, O> Freeze for BitRef<'a, M, T, O>
where M: Freeze,

§

impl<'a, M = Const, T = usize, O = Lsb0> !RefUnwindSafe for BitRef<'a, M, T, O>

§

impl<'a, M, T, O> Unpin for BitRef<'a, M, T, O>
where M: Unpin, O: Unpin,

§

impl<'a, M = Const, T = usize, O = Lsb0> !UnwindSafe for BitRef<'a, M, T, O>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T, R> CollectAndApply<T, R> for T

§

fn collect_and_apply<I, F>(iter: I, f: F) -> R
where I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

§

type Output = R

§

impl<Q, K> Comparable<K> for Q
where Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

§

fn compare(&self, key: &K) -> Ordering

Compare self to key and return their ordering.
§

impl<Q, K> Comparable<K> for Q
where Q: Ord + ?Sized, K: Borrow<Q> + ?Sized,

§

fn compare(&self, key: &K) -> Ordering

Compares self to key and returns their ordering.
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> DynClone for T
where T: Clone,

§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Compares self to key and returns true if they are equal.
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

§

fn equivalent(&self, key: &K) -> bool

Checks if this value is equivalent to the given key. Read more
Source§

impl<Q, K> Equivalent<K> for Q
where Q: Eq + ?Sized, K: Borrow<Q> + ?Sized,

Source§

fn equivalent(&self, key: &K) -> bool

Compare self to key and return true if they are equal.
§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> FromRef<T> for T
where T: Clone,

§

fn from_ref(input: &T) -> T

Converts to this type from a reference to the input type.
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<T> IntoRequest<T> for T

Source§

fn into_request(self) -> Request<T>

Wrap the input message T in a tonic::Request
§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
§

impl<T> Paint for T
where T: ?Sized,

§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Primary].

§Example
println!("{}", value.primary());
§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Fixed].

§Example
println!("{}", value.fixed(color));
§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Rgb].

§Example
println!("{}", value.rgb(r, g, b));
§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Black].

§Example
println!("{}", value.black());
§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Red].

§Example
println!("{}", value.red());
§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Green].

§Example
println!("{}", value.green());
§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Yellow].

§Example
println!("{}", value.yellow());
§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Blue].

§Example
println!("{}", value.blue());
§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Magenta].

§Example
println!("{}", value.magenta());
§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Cyan].

§Example
println!("{}", value.cyan());
§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::White].

§Example
println!("{}", value.white());
§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlack].

§Example
println!("{}", value.bright_black());
§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightRed].

§Example
println!("{}", value.bright_red());
§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightGreen].

§Example
println!("{}", value.bright_green());
§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightYellow].

§Example
println!("{}", value.bright_yellow());
§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlue].

§Example
println!("{}", value.bright_blue());
§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightMagenta].

§Example
println!("{}", value.bright_magenta());
§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightCyan].

§Example
println!("{}", value.bright_cyan());
§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightWhite].

§Example
println!("{}", value.bright_white());
§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Primary].

§Example
println!("{}", value.on_primary());
§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Fixed].

§Example
println!("{}", value.on_fixed(color));
§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Black].

§Example
println!("{}", value.on_black());
§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Red].

§Example
println!("{}", value.on_red());
§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Green].

§Example
println!("{}", value.on_green());
§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Yellow].

§Example
println!("{}", value.on_yellow());
§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Blue].

§Example
println!("{}", value.on_blue());
§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Magenta].

§Example
println!("{}", value.on_magenta());
§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Cyan].

§Example
println!("{}", value.on_cyan());
§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::White].

§Example
println!("{}", value.on_white());
§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlack].

§Example
println!("{}", value.on_bright_black());
§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightRed].

§Example
println!("{}", value.on_bright_red());
§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightGreen].

§Example
println!("{}", value.on_bright_green());
§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlue].

§Example
println!("{}", value.on_bright_blue());
§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightWhite].

§Example
println!("{}", value.on_bright_white());
§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling [Attribute] value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Bold].

§Example
println!("{}", value.bold());
§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Dim].

§Example
println!("{}", value.dim());
§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Italic].

§Example
println!("{}", value.italic());
§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute::Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute::RapidBlink].

§Example
println!("{}", value.rapid_blink());
§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Invert].

§Example
println!("{}", value.invert());
§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Conceal].

§Example
println!("{}", value.conceal());
§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Strike].

§Example
println!("{}", value.strike());
§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi [Quirk] value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Mask].

§Example
println!("{}", value.mask());
§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Wrap].

§Example
println!("{}", value.wrap());
§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Linger].

§Example
println!("{}", value.linger());
§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk::Clear].

§Example
println!("{}", value.clear());
§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Resetting].

§Example
println!("{}", value.resetting());
§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Bright].

§Example
println!("{}", value.bright());
§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::OnBright].

§Example
println!("{}", value.on_bright());
§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the [Condition] value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new [Painted] with a default [Style]. Read more
§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
§

impl<T> TryClone for T
where T: Clone,

§

fn try_clone(&self) -> Result<T, Error>

Clones self, possibly returning an error.
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSendSync for T

Layout§

Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.