foundry_evm_fuzz

Struct FuzzConfig

pub struct FuzzConfig {
Show 15 fields pub cases: u32, pub max_local_rejects: u32, pub max_global_rejects: u32, pub max_flat_map_regens: u32, pub failure_persistence: Option<Box<dyn FailurePersistence>>, pub source_file: Option<&'static str>, pub test_name: Option<&'static str>, pub fork: bool, pub timeout: u32, pub max_shrink_time: u32, pub max_shrink_iters: u32, pub max_default_size_range: usize, pub result_cache: fn() -> Box<dyn ResultCache>, pub verbose: u32, pub rng_algorithm: RngAlgorithm, /* private fields */
}
Expand description

Configuration for how a proptest test should be run.

Fields§

§cases: u32

The number of successful test cases that must execute for the test as a whole to pass.

This does not include implicitly-replayed persisted failing cases.

The default is 256, which can be overridden by setting the PROPTEST_CASES environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§max_local_rejects: u32

The maximum number of individual inputs that may be rejected before the test as a whole aborts.

The default is 65536, which can be overridden by setting the PROPTEST_MAX_LOCAL_REJECTS environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§max_global_rejects: u32

The maximum number of combined inputs that may be rejected before the test as a whole aborts.

The default is 1024, which can be overridden by setting the PROPTEST_MAX_GLOBAL_REJECTS environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§max_flat_map_regens: u32

The maximum number of times all Flatten combinators will attempt to regenerate values. This puts a limit on the worst-case exponential explosion that can happen with nested Flattens.

The default is 1_000_000, which can be overridden by setting the PROPTEST_MAX_FLAT_MAP_REGENS environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§failure_persistence: Option<Box<dyn FailurePersistence>>

Indicates whether and how to persist failed test results.

When compiling with “std” feature (i.e. the standard library is available), the default is Some(Box::new(FileFailurePersistence::SourceParallel("proptest-regressions"))).

Without the standard library, the default is None, and no persistence occurs.

See the docs of FileFailurePersistence and MapFailurePersistence for more information.

You can disable failure persistence with the PROPTEST_DISABLE_FAILURE_PERSISTENCE environment variable but its not currently possible to set the persistence file with an environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§source_file: Option<&'static str>

File location of the current test, relevant for persistence and debugging.

Note the use of &str rather than Path to be compatible with #![no_std] use cases where Path is unavailable.

See the docs of FileFailurePersistence for more information on how it may be used for persistence.

§test_name: Option<&'static str>

The fully-qualified name of the test being run, as would be passed to the test executable to run just that test.

This must be set if fork is true. Otherwise, it is unused. It is automatically set by proptest!.

This must include the crate name at the beginning, as produced by module_path!().

§fork: bool
Available on crate feature fork only.

If true, tests are run in a subprocess.

Forking allows proptest to work with tests which may fail by aborting the process, causing a segmentation fault, etc, but can be a lot slower in certain environments or when running a very large number of tests.

For forking to work correctly, both the Strategy and the content of the test case itself must be deterministic.

This requires the “fork” feature, enabled by default.

The default is false, which can be overridden by setting the PROPTEST_FORK environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§timeout: u32
Available on crate feature timeout only.

If non-zero, tests are run in a subprocess and each generated case fails if it takes longer than this number of milliseconds.

This implicitly enables forking, even if the fork field is false.

The type here is plain u32 (rather than Option<std::time::Duration>) for the sake of ergonomics.

This requires the “timeout” feature, enabled by default.

Setting a timeout to less than the time it takes the process to start up and initialise the first test case will cause the whole test to be aborted.

The default is 0 (i.e., no timeout), which can be overridden by setting the PROPTEST_TIMEOUT environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§max_shrink_time: u32
Available on crate feature std only.

If non-zero, give up the shrinking process after this many milliseconds have elapsed since the start of the shrinking process.

This will not cause currently running test cases to be interrupted.

This configuration is only available when the std feature is enabled (which it is by default).

The default is 0 (i.e., no limit), which can be overridden by setting the PROPTEST_MAX_SHRINK_TIME environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§max_shrink_iters: u32

Give up on shrinking if more than this number of iterations of the test code are run.

Setting this to std::u32::MAX causes the actual limit to be four times the number of test cases.

Setting this value to 0 disables shrinking altogether.

Note that the type of this field will change in a future version of proptest to better accommodate its special values.

The default is std::u32::MAX, which can be overridden by setting the PROPTEST_MAX_SHRINK_ITERS environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§max_default_size_range: usize

The default maximum size to proptest::collection::SizeRange. The default strategy for collections (like Vec) use collections in the range of 0..max_default_size_range.

The default is 100 which can be overridden by setting the PROPTEST_MAX_DEFAULT_SIZE_RANGE environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§result_cache: fn() -> Box<dyn ResultCache>

A function to create new result caches.

The default is to do no caching. The easiest way to enable caching is to set this field to basic_result_cache (though that is currently only available with the std feature).

This is useful for strategies which have a tendency to produce duplicate values, or for tests where shrinking can take a very long time due to exploring the same output multiple times.

When caching is enabled, generated values themselves are not stored, so this does not pose a risk of memory exhaustion for large test inputs unless using extraordinarily large test case counts.

Caching incurs its own overhead, and may very well make your test run more slowly.

§verbose: u32
Available on crate feature std only.

Set to non-zero values to cause proptest to emit human-targeted messages to stderr as it runs.

Greater values cause greater amounts of logs to be emitted. The exact meaning of certain levels other than 0 is subject to change.

  • 0: No extra output.
  • 1: Log test failure messages. In state machine tests, this level is used to print transitions.
  • 2: Trace low-level details.

This is only available with the std feature (enabled by default) since on nostd proptest has no way to produce output.

The default is 0, which can be overridden by setting the PROPTEST_VERBOSE environment variable. (The variable is only considered when the std feature is enabled, which it is by default.)

§rng_algorithm: RngAlgorithm

The RNG algorithm to use when not using a user-provided RNG.

The default is RngAlgorithm::default(), which can be overridden by setting the PROPTEST_RNG_ALGORITHM environment variable to one of the following:

  • xsRngAlgorithm::XorShift
  • ccRngAlgorithm::ChaCha

(The variable is only considered when the std feature is enabled, which it is by default.)

Implementations§

§

impl Config

pub fn with_cases(cases: u32) -> Config

Constructs a Config only differing from the default() in the number of test cases required to pass the test successfully.

This is simply a more concise alternative to using field-record update syntax:

assert_eq!(
    Config::with_cases(42),
    Config { cases: 42, .. Config::default() }
);

pub fn with_source_file(source_file: &'static str) -> Config

Constructs a Config only differing from the default() in the source_file of the present test.

This is simply a more concise alternative to using field-record update syntax:

assert_eq!(
    Config::with_source_file("computer/question"),
    Config { source_file: Some("computer/question"), .. Config::default() }
);

pub fn clone_with_source_file(&self, source_file: &'static str) -> Config

Constructs a Config only differing from the provided Config instance, self, in the source_file of the present test.

This is simply a more concise alternative to using field-record update syntax:

let a = Config::with_source_file("computer/question");
let b = a.clone_with_source_file("answer/42");
assert_eq!(
    a,
    Config { source_file: Some("computer/question"), .. Config::default() }
);
assert_eq!(
    b,
    Config { source_file: Some("answer/42"), .. Config::default() }
);

pub fn fork(&self) -> bool

Return whether this configuration implies forking.

This method exists even if the “fork” feature is disabled, in which case it simply returns false.

pub fn timeout(&self) -> u32

Available on crate feature timeout only.

Returns the configured timeout.

This method exists even if the “timeout” feature is disabled, in which case it simply returns 0.

pub fn max_shrink_iters(&self) -> u32

Returns the configured limit on shrinking iterations.

This takes into account the special “automatic” behaviour.

Trait Implementations§

§

impl Clone for Config

§

fn clone(&self) -> Config

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Debug for Config

§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
§

impl Default for Config

Available on crate feature std only.
§

fn default() -> Config

Returns the “default value” for a type. Read more
§

impl PartialEq for Config

§

fn eq(&self, other: &Config) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
§

impl StructuralPartialEq for Config

Auto Trait Implementations§

§

impl Freeze for Config

§

impl !RefUnwindSafe for Config

§

impl Send for Config

§

impl Sync for Config

§

impl Unpin for Config

§

impl !UnwindSafe for Config

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
§

impl<T, R> CollectAndApply<T, R> for T

§

fn collect_and_apply<I, F>(iter: I, f: F) -> R
where I: Iterator<Item = T>, F: FnOnce(&[T]) -> R,

Equivalent to f(&iter.collect::<Vec<_>>()).

§

type Output = R

§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
Source§

impl<T> DynClone for T
where T: Clone,

§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Paint for T
where T: ?Sized,

§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Primary].

§Example
println!("{}", value.primary());
§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Fixed].

§Example
println!("{}", value.fixed(color));
§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Rgb].

§Example
println!("{}", value.rgb(r, g, b));
§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Black].

§Example
println!("{}", value.black());
§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Red].

§Example
println!("{}", value.red());
§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Green].

§Example
println!("{}", value.green());
§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Yellow].

§Example
println!("{}", value.yellow());
§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Blue].

§Example
println!("{}", value.blue());
§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Magenta].

§Example
println!("{}", value.magenta());
§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Cyan].

§Example
println!("{}", value.cyan());
§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::White].

§Example
println!("{}", value.white());
§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlack].

§Example
println!("{}", value.bright_black());
§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightRed].

§Example
println!("{}", value.bright_red());
§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightGreen].

§Example
println!("{}", value.bright_green());
§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightYellow].

§Example
println!("{}", value.bright_yellow());
§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlue].

§Example
println!("{}", value.bright_blue());
§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightMagenta].

§Example
println!("{}", value.bright_magenta());
§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightCyan].

§Example
println!("{}", value.bright_cyan());
§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightWhite].

§Example
println!("{}", value.bright_white());
§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Primary].

§Example
println!("{}", value.on_primary());
§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Fixed].

§Example
println!("{}", value.on_fixed(color));
§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Black].

§Example
println!("{}", value.on_black());
§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Red].

§Example
println!("{}", value.on_red());
§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Green].

§Example
println!("{}", value.on_green());
§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Yellow].

§Example
println!("{}", value.on_yellow());
§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Blue].

§Example
println!("{}", value.on_blue());
§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Magenta].

§Example
println!("{}", value.on_magenta());
§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Cyan].

§Example
println!("{}", value.on_cyan());
§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::White].

§Example
println!("{}", value.on_white());
§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlack].

§Example
println!("{}", value.on_bright_black());
§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightRed].

§Example
println!("{}", value.on_bright_red());
§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightGreen].

§Example
println!("{}", value.on_bright_green());
§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlue].

§Example
println!("{}", value.on_bright_blue());
§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightWhite].

§Example
println!("{}", value.on_bright_white());
§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling [Attribute] value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Bold].

§Example
println!("{}", value.bold());
§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Dim].

§Example
println!("{}", value.dim());
§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Italic].

§Example
println!("{}", value.italic());
§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute::Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute::RapidBlink].

§Example
println!("{}", value.rapid_blink());
§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Invert].

§Example
println!("{}", value.invert());
§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Conceal].

§Example
println!("{}", value.conceal());
§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Strike].

§Example
println!("{}", value.strike());
§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi [Quirk] value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Mask].

§Example
println!("{}", value.mask());
§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Wrap].

§Example
println!("{}", value.wrap());
§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Linger].

§Example
println!("{}", value.linger());
§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk::Clear].

§Example
println!("{}", value.clear());
§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Resetting].

§Example
println!("{}", value.resetting());
§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Bright].

§Example
println!("{}", value.bright());
§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::OnBright].

§Example
println!("{}", value.on_bright());
§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the [Condition] value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new [Painted] with a default [Style]. Read more
§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R, ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R, ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T> TryClone for T
where T: Clone,

§

fn try_clone(&self) -> Result<T, Error>

Clones self, possibly returning an error.
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSendSync for T

Layout§

Note: Most layout information is completely unstable and may even differ between compilations. The only exception is types with certain repr(...) attributes. Please see the Rust Reference's “Type Layout” chapter for details on type layout guarantees.

Size: 104 bytes